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Abstract

In this article, we propose a new extension of the exponential distribution.
We investigate some of their statistical properties, including moments, quantile
and moment generating functions, emphasizing their utility in modeling diverse
aging and failure criteria. One key advantage of the proposed distribution lies in
its capacity to represent its density as a mixture of exponential densities,
offering both symmetric and asymmetric shapes for greater modeling
flexibility. The estimation of the model parameters is achieved through
maximum likelihood estimation. The study presents comprehensive simulation
results to assess the effectiveness of the proposed estimation technique.
Furthermore, a practical application on real-world data is conducted to
showcase the adaptability and versatility of the introduced distribution when

compared with other extensions of the exponential model.

Keywords: Maximum likelihood estimation; Exponential distribution;

Simulations; Data analysis .
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1. Introduction

Recently, many generalized families of distributions have been proposed
and extensively used in modeling data in various applied sciences such as
economics, finance, insurance, engineering and life testing. However, there is a
clear need for extended forms of these distributions by adding one or more
shape parameter(s) in order to obtain greater flexibility in modelling these data.
So, several classes of distributions have been constructed by extending
common families of continuous distributions. Gupta et al. (1998) who proposed
the exponentiated-G class, which consists of raising the cumulative distribution
function (CDF) to a positive power parameter. The idea of beta-generated
(B-G) family of distributions stemmed from the paper of Eugene et al. (2002),
Generalized beta distributions are widely studied in statistics and numerous
authors have developed various classes of these distributions. Some other
beta-generated families are also been discussed in the literature. Some others
families are reobtained by means of the maximum entropy principle by
Zografos (2008) who considered the beta-Weibull distribution through this
principle. Pescim et al. (2010) and Paranaiba et al. (2011) have studied
important mathematical properties of the beta generalized half-normal and beta
Burr XII distributions. Many other classes can be cited such as
Kumaraswamy-G by Cordeiro and de Castro (2011), exponentiated
generalized-G by Cordeiro et al. (2013), beta Marshall-Olkin-G by Alizadeh et
al. (2015), beta Weibull-G family by Yousof et al. (2017), beta transmuted-H
families by Afify et al. (2017), beta Nadarajah-Haghighi distribution by Dias et
al. (2018), the modified beta transmuted family by Awodutire et al. (2021), odd
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Fréchet-G family by Sadig et al. (2023) and alpha—beta-power family by
Semary et al. (2024).

In this paper, we introduce a new four parameter beta alpha power
exponential (BAPEX) distribution, the exponential (Ex) distribution has been
extensively used in analyzing lifetime data due to its lack of memory property
and its simple form. However, the Ex-distribution with only a constant hazard
rate shape is not able to fit data sets with different hazard shapes as increasing,
decreasing, bathtub, or unimodal (upside down bathtub) shaped failure rates,
often encountered in engineering and reliability, among others.

The rest of the paper is organized into seven sections. In Section 2 We
define the new BAP-H family and one of special sub-models the BAPEX
model. In Section 3, we derive a linear representation for the BAP-H density
function. In section 4, we obtain some of its statistical properties. Section 5,
Inference about the BAPEX distribution parameters is presented. Section 6
provides a simulation study. A real-life data application is presented in Section

7. Section 8 gives some conclusions.

2. The proposed Family

Alpha power transformation-H (APT-H) family was proposed by
Mahdavi and Kundu (2017). Consider a baseline CDF G(x;a) with
corresponding probability densty function (PDF) g(x; @) and parameter a.
Then, the CDF of the APT-H family (for x € R) has the form

H(x)_
a 1' (1)

The corresponding PDF of the APT-H class is given by

G(x) =

a—-1
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9(0) = 2L p(x)a®, )
where o« >0, a+ 1. For a= 1, Equation (2) reduces to the baseline
distribution. Further details can be found in Mahdavi and Kundu (2017). The
B-G family was defined by Eugene et al. (2002). The CDF of the B-G family (
for x € R) has the form

16 (5- -
Fx) = o[y tOD A= )17 dt = Ig(0 (8,m). 3)

The corresponding PDF of the B-G class is given by
1

f@) =555 9@ G)TH1-GW], (4)

where § > 0 and n > 0 are two additional shape parameters, Iy(§,n) =

By(6,1n)/L(8,n) is the incomplete beta function ratio.

By using Mahdavi and Kundu (2017) and Eugean et al. (2002) then the BAP-
H family which CDF (for x € R) is given by

aH)

[Tamt @D — )17t = I _ueo_, (8,7). (5)

F(x) = 0

B&m)

a—-1

The corresponding PDF of the BAP-H family is given by

al@ — 177"
b ﬁ] (0

1 log(a)

f® =560 a-1

h(x)at®) [
a—1

where § > 0,n>0and a > 0,0 # 1.

For a = 1, we get the B-G family H(x). A random variable X having the PDF
(6 )will be denoted by X ~BAP-H (6,1,a). BAP-H family and its Sub-
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families are introduced in Table 1.
Table 1: BAP-H family and its Sub-families.

BAP-H family ) n a New

B-G family é 1 Eugene et al. (2002)
APT-H family 1 1 a Mahdavi and Kundu (2017)
exp-G family é 1 1 Gupta et al. (1998)

The Ex distribution with scale parameter A> 0 has PDF and CDF given by
h(x) = Ae=** (for x > 0) and H(x) = 1 — e~**, respectively. Then, the CDF
of the BAPEx distribution (for x>0) has the form

_—Ax
al—e -1

1 — - -
FO) =550, 0 tO0A-0"tdt =1, 2 (6,m). (7)

a—1

The corresponding PDF of the BAPEX distribution is given by

—ax 5-1 ax -1
1 log(c) ~ ., ,-ax |@'7° 1 at-e ™ _ 1]
fO=36m a-17"“ a1 | |V Ter | @

For a = 1, we get the BEX distribution. A random variable X having the PDF
(8) will be denoted by X ~BAPEX (6,1, a,A). The quantile function of the
BAPEX , Q(u) = F~1(p), can be obtained by inverting (7 ) numerically.

Figure 1 presents the PDF of the BAPEX distribution for different parameter
values. The plots demonstrate the flexibility of the model in capturing various
shapes, including skewed and symmetric behaviors, which makes it suitable
for modeling diverse types of data. Figure 2 shows the HRF of the BAPEX
distribution for several parameter combinations. The results indicate that the
distribution can accommodate increasing, decreasing, and bathtub-shaped
hazard functions, emphasizing its applicability in reliability and survival

analysis.
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Figure 1: Plots of the PDF of the BAPEX distribution with different
parameter values.
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Figure 2: Plots of the HRF of the BAPEX distribution with different
parameter values.
3. Mixture Representation

In this section, we derive a useful representation for the BAP-H family
density. The derived representation is crucial for the derivation of mathematical

properties. It allows moments, moment generating functions (MGF), order
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statistic properties, etc., to be expressed as mixtures of BAP-H family. Using

the following power series

(1-2)1 = z () =D¥z¥, 1zl > 0and q> 0. 9)
k=0
A useful mixture represenation of the BAP-H density in (6) follows as

— og() H(x (—1)! n—l H(G) _ 47i+6-1
FO= i o <>z(a (1 Dla"@ =1

Hence

[a,H(x) _ 1]i+8—1 — a,(i+6—1)H(x)[1 _ a—H(x)]i+5—1_
Applying the power series (7) in th following terme
a(i+6—1)H(x)[1 _ a—H(x)]i+5—1

— (i+8-DH() z (_1)] (i + 6 o 1) q JH®)

: J
Jj=0

_ z (=1)/ (i 0= 1) @ (+6=i—DHG),
j
=0

Then, we can write

_ log(@h(x) N0 m-1y(i+6—1y DY e
ro= g 2 (0T Jamgme e

i,j=0

Using the follow power series

© k
a_ (log o) "

q > 0.
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Hence

(0]

k
q+8-NHE) — Z (loila) (i+8—HFH ) .
k=0 '

The PDF of the BAP-H class reduces to

h(x) ji (— DI [log() ¥+ (i + & — j)*

1= 56w | ki (@ =

J k=0

(n - 1) <i + 5]_— 1) HEx)"

Then, we have

FG) =D begen @, (10)
k=0
where
1 O =1\ (i + 6 — 1\ (=) [log(e)]“+ (i + & — )
“ T BG ZO( i )( J ) (k + D! (a — 1)+
and

Gi1(x) = (k + Dh()H () .
Jr+1(x) is the exponentiated-H (exp-H) with power parameter (k + 1).
Thus, several mathematical properties of the BAP-H family can be obtained
simply from those of the exp-H family. Equation (10) is the main result of this

section.
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The CDF of the BAP-H family can also be expressed as a mixture of exp-H

CDFs. By integrating (10) , we obtain the mixture representation
FOO = biGina (), (an
k=0

where Gp.1(x) = H(x)**! is the CDF of the exp-H with power parameter
k+1.

4 Statistical Properties

In this section, the main statistical properties of the proposed distribution
family are presented. These include the derivation of the moments and the
moment generating function (MGF), as well as the analysis of order statistics.
Furthermore, the entropy measure is discussed to explore the uncertainty
associated with the distribution. Finally, the quantile function is derived, which
plays a key role in simulation and statistical
4.1 Moment

The r-th moment of X, denoted by u,., is given by:

B =BG = ) BB,
k=0

where Y,,, is an exp-H random variable with power parameter k + 1.The

n-th central moment of X, denoted by p,, is given by:

o = B =)™ = ) (7) (=)™ TE D),

r=0
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4.2 Moment Generating Function

In probability theory and statistics, the MGF of a real-valued random
variable is an alternative specification of its probability distribution. Thus, it
provides the basis of an alternative route to analytical results compared with
working directly with probability density functions or cumulative distribution
functions. There are particularly simple results for the MGF of distributions
defined by the weighted sums of random variables. However, not all random
variables have MGF, see Hogg et al. (2005).

The MGF My (t) = E(etX) is given by:

Me(8) = ) biMiea (0),
k=0

where M, ,(t) is the MGF of Yj,;.

4.3 Order Statistics
The order statistics are important in statistical theory. Let X;, ..., X,, bea
random sample from the BAP-H family. The PDF of the i-th order statistic,

Xi:n’ is

fin ()

n—i

f(x) l (=i o1
=B(i,n—i+1);(_1)]< j>F(x)] - (12)

The term Fy, (x)/*'~* can be expressed as:

% jHi-1
Fy, (x)/*71 = [ b H(x)k“] : (13)
kZO .
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Using the identity (3,2, b,u”)™ = Y72, C,-u’, (see Gradshteyn and Ryzhik,
2014) where the coefficients C,,, are easily determined from the recurrence

equation , we obtain

. 00 (et 1) K j+i—1

k=0

- (k+1)7*
= e |HEO | (14)
k=0

Substituting (10) and (14) into (12) and using a power series expansion, the

PDF of X;.,, can be expressed as

fxm<x)—2< 1 (" -‘)B(ln_lﬂ)i Ciotrj-thiers (),

where hy,;(x) is the exp-H PDF with power parameter k + 1.
It follows that the PDF of BAP-H order statistics is a mixture of exp-H PDFs.

Hence, the properties of X;.,, follow from the properties of X;. ;.
4.4 Entropy

The Renyi entropy of a random variable X is defined by:

lo(X) = = log(f% f(x)° dx), 6>0, 8 #1.
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-1

1 log(a) all®) — 1]6 [1

“pEm) a-1

2@ — 177" ’
a-—-1 ] '

Applying the power series (9) in th following equation

h(x)aH®

a—1

£ = [z ] Q) T i CO (0 -1)
&M \a—1 e (a — 1)k+60-0 % [

k+66-6
[af®) — 1] e
Hence
[aH(x) _ 1]k+66—9 — a(k+89—0)H(x)[1 _ a—H(x)]k+66—9.

Applying the power series (9) in th following terme

a(k+66—6)H(x) [1 _ a—H(x)]k+89—0

_ z (—1)/ (k 06 — 9) o (k+60-j-0)H(x)
j
=0

Then, we can write

log() h(M)]" < 8 — D\ (k+80 -0\ (DM e
f(x)e — ! 3. ] z ( 7}7{ )( j )(a_l)k+59 o lk+86—]] ().

Using the follow power series

- (log ¥
1 = z P q<, g>0.
k=0 '
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Hence

© m
qk+80-DH(x) — z %(k + 660 — j)™H(x)™.

m=0

The PDF of the BAP-H class reduces to

h(x) 1°
B(8,m)

fof = |

(=1)**/[log(a)]™*? (k + 56 — H™ (e(n - 1)) (k +686 -0

Kl (@ — 1)k+36 k i )H(x)m'

k,jm=0

The Reényi entropy of the BAP-H family is given by

Iy (X) = 1i610g<z bmjoo h()H ()™ dx>, (15)

m=0
where
b, =
k + 96_— 0) (G(n — 1)) (—1)j+k[log(a)]m+9(k+69—j)m.

] k m!(a—l)k+59

8@ Sco (

4.5 Quantile Function
To find the quantile function (QF) for this family of distributions, using

the inverse of the function H(x) express x interms of p to get the QF :
Q) =H(

where I;1(p; 8,1) is the inverse of the regularized incomplete beta function.

log(1+1y‘1(p:6,n)(a—1)))
log(a) ’
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5 Maximum Likelihood Estimation

Let x4,....,x, be the observed random sample from the BAPEX
distribution with parameters a,n,A and §.
Let 0= (a,n,487)T be the (p x1) parameter vector. Then, the
log-likelihood function for @, say ¢ = #(8), is given by

? = —nlog [B(5,1)] + nlog [log(a)] — nlog(a — 1)

N Z [log(/l e~**) + z;log(a) + (6 — 1)log( a’ _11>

+ (n — 1log (1 — a;__;)].

_ (3¢ _ ¢ 9t a¢atyr _
Th score vector components, say U(8)= (ae = 9%’ 35" om a}\) =

(Uou US» Un» UA)TI

are given by

Us = [;gll) + iz, log (a = 1)

__ —ha; _ai—l
Un = giomy T 2i= log(l a1 )

n

a= =y |2 - (A - D) - (- )

alog(a) «a

aZilog(@x;e e A%i ]
)

n(25)

zilog(a)xie_’lxi azilog(a)xie_)‘xi
=Y |zt e og(@) + (6~ D= (7~ 1) =

165



where

__0B(dM) __0B(M)
1.7 58 7 92 7

and z; = 1 — e ¥, Setting the nonlinear

system of equations U, =Us=U,=U,=0 and solving them
simultaneously yields the

MLE 8 = (@,6,A,71)T of the 8 = (a,8,A,nT)T. The model parameters are
estimated using the MLE method by solving the first-order derivative equations
of the log-likelihood function. Once the estimates are obtained, the Fisher
information matrix is computed from the second derivatives (the negative
Hessian) of the log-likelihood function. The inverse of this matrix represents
the variance—covariance matrix of the estimators, from which the standard

errors (SEs) are derived as the square roots of its diagonal elements.

6. Simulation Study

Now, we provided detailed simulation results to explore the
performances of the ML estimation in estimating the parameters of the
BAPEXx model. We considered several sample sizes and different values of the
parameters, that is, n = {50,80,200,400}. The behavior of the different

estimates is compared with respect to their: average absolute bias
(IBIAS|), |BIAS| =~ |0 — 6], mean square errors (MSE), MSE =
%Zﬁ"zl (6 — 6)2, and mean relative errors (MRE), MRE = %Z?’:lh@ —0|/86.
Table 2 show the simulation results, average ML estimates of the parameters,

|BIAS|, MSE, and MRE, of the BAPEx parameters using different

approaches. These results showed that estimates are very close to their true
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values and have small biases, MSE and MRE. The results illustrated that the

biases, MSE, and MRE decrease as n increases, showing that the introduced

estimators are consistent. The results were obtained through statistical

analyses performed using the R software environment.

Table 2: The AEs, MSE, BIAS and MRE of the BAPEX parameters for different

values of the parameters and n.

n a=04,8=15mn=1751= 175
50 27.45821 2.07983 12.20087 2.78534
80 AES 1.47232 1.77045 2.13959 2.44588
200 0.58832 156584 1.73166 2.01634
400 0.48298 151885 1.73609 1.83471
50 11.611 4.04283 91.14586 10.16723
80 MSE 7.7943 1.35982 10.72764 5.81346
200 0.75376 0.12031 0.50563 1.69564
400 0.20903 0.03061 0.10045 0.47244
50 27.32195 0.83765 11.15317 1.36319
80 BAIS 1.31913 0.49489 0.97941 0.94933
200 0.39946 0.21178 0.36307 0.47609
400 0.24517 0.13021 0.21587 0.26146
50 68.30488 0.55844 6.37324 0.77897
80 MRE 3.29784 0.32992 0.55966 0.54247
200 0.99864 0.14119 0.20747 0.27205
400 0.61293 0.08681 0.12336 0.14941
n a =158 =0.5mn=0.751= 0.75
50 2.24801 0.53101 0.74150 0.94102
80 AES 1.94406 0.51455 0.74588 0.86309
200 1.60473 0.50645 0.75122 0.79366
400 151515 0.50389 0.75549 0.76296
50 15.05972 0.02085 0.10078 0.44496
80 MSE 12.67606 0.00906 0.06711 0.21826
200 0.7864 0.00326 0.02421 0.07333
400 0.25966 0.00146 0.01255 0.02638
50 1.34964 0.09877 0.19468 0.36022
80 BAIS 0.94719 0.07017 0.1613 0.27106
200 0.46219 0.04372 0.10892 0.16314
400 0.28944 0.02974 0.07755 0.10533
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50 0.89976 0.19754 0.25957 0.48029
80 MRE 0.63146 0.14033 0.21507 0.36141
200 0.30813 0.08744 0.14523 0.21752
400 0.19296 0.05948 0.1034 0.14044
n a=0.256=0.6,n=0.641=0.25
50 0.35154 0.66482 0.46038 0.44147
80 AEs 0.27717 0.64664 0.49155 0.37917
200 0.23563 0.61926 0.54155 0.31523
400 0.22998 0.60912 0.56417 0.29873
50 0.2982 0.1369 0.19342 0.22966
80 MSE 0.21585 0.10004 0.16634 0.17268
200 0.13157 0.05782 0.12188 0.10497
400 0.09287 0.04544 0.09634 0.07884
50 0.27427 0.0438 0.05584 0.12292
80 BAIS 0.10271 0.02078 0.04366 0.06867
200 0.02807 0.0063 0.02597 0.02723
400 0.0134 0.00621 0.01778 0.02058
50 1.19279 0.22816 0.32237 0.91865
80 MRE 0.86341 0.16674 0.27723 0.69071
200 0.52629 0.09636 0.20314 0.4199
400 0.37149 0.07573 0.16057 0.31537

7 An Application to Real Data

In this section, The BAPEx model is fitted to real data and compared with

other existing distributions. In order to compare the fits of the distributions,

we consider various measures of goodness-of-fit including the Akaike

information criterion (AIC) (Akaike, 1973),

Kolmogorov -Smirnov (K-S)

statistics (with its p — value) and 2, where 2, is the maximized log-likelihood.

The dataset comprises of 74 observations, specifically referring to gauge

lengths of 20 mm. The analysis of this data studied by Kundu and Ragab
(2009). Data set : The gauge lengths of 20 mm data: 1.312, 1.314, 1.479,
1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021,
2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272,
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2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490,
2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648,
2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880,
2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096,
3.128, 3.233, 3.433, 3.585, 3.585. Here, we use this data to compare the
BAPEx model with other models, namely: generalized exponential (GEX)
(Gupta and Kundun, 2001 ), Kumaraswamy transmuted-exponential (Kw-
TEX) (Afify et al., 2016), generalized transmuted exponential (GTEx) (Nofal
etal., 2017), generalized transmuted generalized exponential (GTGEX) (Nofal
et al., 2017), alpha power exponentiated exponential (APEXEX) (Afify et al.,
2020), the exponentiated generalized alpha power exponential (EGAPEX)
(EISherpieny and Almetwally, 2022), Alpha power exponentiated inverse
exponential (APEIEX) (Kargboet al., 2023) and exponentiated generalized
Weibull exponential distribution (EGWEX) ( Abonongo and Abonongo,
2024), distribution. We compare the fits of the BAPEx model with the
EGAPEXx, KWT-Ex, APEXEX, APEIEX, GEx, GT-GEx, EGWEx and GT-
GGEx models. Table 3 list the numerical values of AIC, K-S (P-value) and 2
for the models fitted to the gauge lengths of 20 mm. The figures in this table
indicate that the BAPEx model has the lowest values for goodness-of-fit
statistics for the gauge lengths of 20 mm among the fitted models. So, the
BAPEXx model could be chosen as the best model. The MLEs and their
corresponding standard errors of the model parameter are given in Table 4.
The results were obtained through statistical analyses performed using the R

software environment.
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Table 3: Findings from the fitted distributions to the gauge lengths of 20 mm

dataset.

Model AIC ? K-S(P-value)
BAPEX 110.3749 51.18743 0.0560 (0.9743)
EGAPEX 110.7216 51.36079 0.0571 (0.9722)
Kw-TEX 111.0739 51.5369 0.0583 (0.9720)
GT-GEx 113.2988 52.64939 0.0687 (0.8765)
EGWEX 114.2961 52.14805 0.0578 (0.9657)
GT-GGEX 115.2988 52.6493 0.0686 (0.8766)
APEXEX 115.3082 54.65412 0.0697 (0.8648)
GEXx 121.6065 58.80327 0.0953 (0.5120)
APEIEX 297.6644 145.8322 0.4695(0.0030)

Table 4: MLEs and the corresponding SEs of the gauge lengths of 20 mm data.

Model parameter (SEs)
a o) n A
BAPEX 0.211 2568.307 4.306 429.294
(0.631) (3925.267) (8.924) (4318.758)
S P B A
EGAPEx | 5256.025 8865 5.716 0.08997
(170.3) (1819.498) (1.145) (0.00649)
A o B a
GT-GEx 2.819 108.731 154.477 0.8419
(0.304) (73.534) (612.794) (0.093)
o a B
APEIEX 3236.676 1.265 0.231
(3786.408) (24.369) (4.459)
A a B o S
GT-GGEX 10.394 0.46 72.577 0.841 2.819
(482.8) (485.8) (3371) (0.09313) (0.3041)
a b A o
KW-TEx 5.896 78.44 19.273 0.009
(0.519) (206.267) (7.366) (0.0517)
o d B b c a
EGWEX 0.381 4.499 1.9123 1.596 6.607 1.735
(10.1068) (1.351) (108.873) (0.907) (742.411)  (81.823)
o a C
APEXEX 46.324 2.521 91.046
(65.8188) (0.2173) (52.846)
GEXx o S
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89.431 2.019
(32.472) (0.172)

Figure 3 illustrates the goodness-of-fit of the BAPEX distribution to the observed
data. The PDF, CDF and SF plots show a close agreement between the empirical and
theoretical curves. Moreover, the P—P plot demonstrates that the observed and expected
values are nearly aligned along the 45-degree line, confirming the adequacy of the
BAPEXx model in describing the data.
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Figure 3: The fitted BAPEx PDF, CDF, SF, and P—P plots for gauge lengths dataset.
8 Conclusions

In this paper, we introduce a new four-parameter distribution called the
beta alpha power exponential (BAPEX) distribution. The statistical properties of
the new model are derived. Further, the BAPEX distribution parameters are
estimated by the maximum likelihood method. A simulation study is conducted
to explore the performance of the maximum likelihood method. Finally, the
practical importance of the BAPEX distribution is studied by analyzing a real-life
dataset. Goodness-of-fit statistics for the analyzed data set showed that our
BAPEXx distribution provides a better fit in comparison with other rival
distributions.
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