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Abstract 

   In this article, we propose a new extension of the exponential distribution. 

We investigate some of their statistical properties, including moments, quantile 

and moment generating functions, emphasizing their utility in modeling diverse 

aging and failure criteria. One key advantage of the proposed distribution lies in 

its capacity to represent its density as a mixture of exponential densities, 

offering both symmetric and asymmetric shapes for greater modeling 

flexibility. The estimation of the model parameters is achieved through 

maximum likelihood estimation. The study presents comprehensive simulation 

results to assess the effectiveness of the proposed estimation technique. 

Furthermore, a practical application on real-world data is conducted to 

showcase the adaptability and versatility of the introduced distribution when 

compared with other extensions of the exponential model. 

Keywords: Maximum likelihood estimation; Exponential distribution; 

Simulations; Data analysis . 
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1. Introduction 

    Recently, many generalized families of distributions have been proposed 

and extensively used in modeling data in various applied sciences such as 

economics, finance, insurance, engineering and life testing. However, there is a 

clear need for extended forms of these distributions by adding one or more 

shape parameter(s) in order to obtain greater flexibility in modelling these data. 

So, several classes of distributions have been constructed by extending 

common families of continuous distributions. Gupta et al. (1998) who proposed 

the exponentiated-G class, which consists of raising the cumulative distribution 

function (CDF) to a positive power parameter. The idea of beta-generated 

(B-G) family of distributions stemmed from the paper of Eugene et al. (2002), 

Generalized beta distributions are widely studied in statistics and numerous 

authors have developed various classes of these distributions. Some other 

beta-generated families are also been discussed in the literature. Some others 

families are reobtained by means of the maximum entropy principle by 

Zografos (2008) who considered the beta-Weibull distribution through this 

principle. Pescim et al. (2010)  and Paranaıba et al. (2011) have studied 

important mathematical properties of the beta generalized half-normal and beta 

Burr XII distributions. Many other classes can be cited such as 

Kumaraswamy-G by Cordeiro and de Castro (2011),  exponentiated 

generalized-G by Cordeiro et al. (2013), beta Marshall-Olkin-G by Alizadeh et 

al. (2015), beta Weibull-G family by Yousof et al. (2017), beta transmuted-H 

families by Afify et al. (2017), beta Nadarajah-Haghighi distribution by Dias et 

al. (2018), the modified beta transmuted family by Awodutire et al. (2021), odd 
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Fréchet-G family by Sadiq et al. (2023) and alpha–beta-power family by 

Semary et al. (2024). 

 In this paper, we introduce a new four  parameter beta alpha power 

exponential (BAPEx) distribution, the exponential (Ex) distribution has been 

extensively used in analyzing lifetime data due to its lack of memory property 

and its simple form. However, the Ex-distribution with only a constant hazard 

rate shape is not able to fit data sets with different hazard shapes as increasing, 

decreasing, bathtub, or unimodal (upside down bathtub) shaped failure rates, 

often encountered in engineering and reliability, among others. 

The rest of the paper is organized into seven sections. In Section 2 We 

define the new BAP-H family and one of special sub-models the BAPEx 

model. In Section 3, we derive a linear representation for the BAP-H density 

function. In section 4, we obtain some of its statistical properties. Section 5, 

Inference about the BAPEx distribution parameters is presented. Section 6 

provides a simulation study. A real-life data application is presented in Section 

7. Section 8 gives some conclusions. 

2. The proposed Family 

 Alpha power transformation-H (APT-H) family was proposed by 

Mahdavi and Kundu (2017). Consider a baseline CDF 𝐺(𝑥; 𝛼) with 

corresponding probability densty function (PDF) 𝑔(𝑥; 𝛼) and parameter 𝛼. 

Then, the CDF of  the APT-H family ( for 𝑥 ∈  𝑅) has the form    

  𝐺(𝑥) =
𝛼𝐻(𝑥)−1

𝛼−1
,                                            (1) 

The corresponding PDF of the APT-H class is given by   
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  𝑔(𝑥) =
𝑙𝑜𝑔(𝛼)

𝛼−1
𝑕(𝑥)𝛼𝐻(𝑥),                                                   (2) 

 where α > 0, α ≠ 1. For α= 1, Equation (2) reduces to the baseline 

distribution. Further details can be found in Mahdavi and Kundu (2017). The 

B-G family was defined by Eugene et al. (2002). The CDF of the B-G family ( 

for x ∈ R) has the form  

   𝐹(𝑥) =
1

𝛽(𝛿,𝜂)
∫  

𝐺(𝑥)

0
𝑡(𝛿−1)(1 − 𝑡)𝜂−1𝑑𝑡 = 𝐼𝐺(𝑥)(𝛿, 𝜂).                            (3) 

The corresponding PDF of the B-G class is given by 

        𝑓(𝑥) =
1

𝛽(𝛿,𝜂)
    𝑔(𝑥)    𝐺(𝑥)𝛿−1,1 − 𝐺(𝑥)-𝜂−1,                                   (𝟒)  

where 𝛿 >  0 and 𝜂 >  0 are two additional shape parameters, 𝐼𝑦(𝛿, 𝜂)  =

 𝛽𝑦(𝛿, 𝜂)/𝛽(𝛿, 𝜂) is the incomplete beta function ratio. 

By using Mahdavi and Kundu (2017) and Eugean et al. (2002)  then  the BAP-

H family which CDF  ( for 𝑥 ∈  𝑅) is given by  

𝐹(𝑥) =
1

𝛽(𝛿,𝜂)
∫  

𝛼𝐻(𝑥)−1

𝛼−1
0

𝑡(𝛿−1)(1 − 𝑡)𝜂−1𝑑𝑡 = 𝐼𝛼𝐻(𝑥)−1

𝛼−1

(𝛿, 𝜂).          (𝟓)   

The corresponding PDF of  the BAP-H family is given by  
  

𝑓(𝑥) =
1

𝛽(𝛿, 𝜂)
    

𝑙𝑜𝑔(𝛼)

𝛼 − 1
𝑕(𝑥)𝛼𝐻(𝑥)     *

𝛼𝐻(𝑥) − 1

𝛼 − 1
+

𝛿−1

*1 −
𝛼𝐻(𝑥) − 1

𝛼 − 1
+

𝜂−1

,   (𝟔) 

  

where δ > 0, η > 0 and α > 0, α ≠ 1.  

For α = 1, we get the B-G family 𝐻(𝑥). A random variable 𝑋 having the PDF 

(6 )will be denoted by X ∼BAP-H (δ, η, α). BAP-H family and its Sub-
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families are introduced in Table 1. 

Table  1: BAP-H family and its Sub-families. 

BAP-H family 𝛿 𝜂 𝛼            New 

B-G family 𝛿 𝜂 1 Eugene et al. (2002) 

APT-H family 1 1 𝛼 Mahdavi and Kundu (2017) 

exp-G family 𝛿    1      1  Gupta et al. (1998) 

The Ex distribution with scale parameter λ> 0 has PDF and CDF given by  

𝑕(𝑥) = 𝜆𝑒−𝜆𝑥 (for x > 0) and 𝐻(𝑥) = 1 − 𝑒−𝜆𝑥, respectively. Then, the CDF 

of the BAPEx distribution (for x > 0) has the form 

𝐹(𝑥) =
1

𝛽(𝛿,𝜂)
∫  

𝛼1−𝑒−𝜆𝑥
−1

𝛼−1
0

𝑡(𝛿−1)(1 − 𝑡)𝜂−1𝑑𝑡 = 𝐼
𝛼1−𝑒−𝜆𝑥

−1

𝛼−1

(𝛿, 𝜂).                 (𝟕) 

The corresponding PDF of  the BAPEx  distribution  is given by  

𝑓(𝑥) =
1

𝛽(𝛿, 𝜂)
    

log(α)

𝛼 − 1
𝜆𝑒−𝜆𝑥𝛼1−𝑒−𝜆𝑥

  [
𝛼1−𝑒−𝜆𝑥

− 1

𝛼 − 1
]

𝛿−1

 [1 −
𝛼1−𝑒−𝜆𝑥

− 1

𝛼 − 1
]

𝜂−1

(𝟖) 

For α = 1, we get the BEx distribution.  A random variable X having the PDF 

(8) will be denoted by X ∼BAPEx (δ, η, α, λ). The quantile function of the 

BAPEx , 𝑄(𝑢) = 𝐹−1(𝑝), can be obtained by inverting (7 ) numerically. 

Figure 1 presents the PDF of the BAPEx distribution for different parameter 

values. The plots demonstrate the flexibility of the model in capturing various 

shapes, including skewed and symmetric behaviors, which makes it suitable 

for modeling diverse types of data. Figure 2 shows the HRF of the BAPEx 

distribution for several parameter combinations. The results indicate that the 

distribution can accommodate increasing, decreasing, and bathtub-shaped 

hazard functions, emphasizing its applicability in reliability and survival 

analysis. 
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Figure 1: Plots of the PDF of the BAPEx distribution with different  

parameter values. 

Figure 2: Plots of the HRF of the BAPEx distribution with different 

parameter values. 

 3. Mixture Representation 

In this section, we derive a useful representation for the BAP-H  family 

density. The derived representation is crucial for the derivation of mathematical 

properties. It allows moments, moment generating functions (MGF), order 
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statistic properties, etc., to be expressed as mixtures of BAP-H family. Using 

the following  power series  

(1 − 𝑧)𝑞 = ∑  

∞

𝑘=0

.
𝑞
𝑘

/ (−1)𝑘𝑧𝑘,    |𝑧| > 0 𝑎𝑛𝑑  𝑞 > 0.                                    (𝟗) 

A useful mixture represenation of the BAP-H density in (6) follows as  

𝑓(𝑥) =    
log(α)

𝛽(𝛿, 𝜂)
    𝑕(𝑥)𝛼𝐻(𝑥)  ∑  

∞

𝑖=0

(−1)𝑖

(𝛼 − 1)𝑖+𝛿
.

𝜂 − 1
     𝑖

/ [𝛼𝐻(𝑥) − 1]
𝑖+𝛿−1

. 

Hence 

,𝛼𝐻(𝑥) − 1-𝑖+𝛿−1 = 𝛼(𝑖+𝛿−1)𝐻(𝑥),1 − 𝛼−𝐻(𝑥)-𝑖+𝛿−1. 

Applying  the power series (7) in th following terme 

  

𝛼(𝑖+𝛿−1)𝐻(𝑥),1 − 𝛼−𝐻(𝑥)-𝑖+𝛿−1

= 𝛼(𝑖+𝛿−1)𝐻(𝑥) ∑  

∞

𝑗=0

(−1)𝑗 (
𝑖 + 𝛿 − 1
        𝑗

) 𝛼−𝑗𝐻(𝑥) 

= ∑  

∞

𝑗=0

(−1)𝑗 (
𝑖 + 𝛿 − 1
        𝑗

) 𝛼(𝑖+𝛿−𝑗−1)𝐻(𝑥). 

Then, we can write 
  

𝑓(𝑥) =
log(𝛼) 𝑕(𝑥)

𝛽(𝛿, 𝜂)
    ∑  

∞

𝑖,𝑗=0

.
𝜂 − 1
     𝑖

/ (
𝑖 + 𝛿 − 1
       𝑗

)
(−1)𝑖+𝑗

(𝛼 − 1)𝑖+𝛿
𝛼,𝑖+𝛿−𝑗-𝐻(𝑥)

. 

Using the follow power series  

𝛼𝑞 = ∑  

∞

𝑘=0

(log α)𝑘

𝑘!
𝑞𝑘, 𝑞 > 0. 
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Hence 

𝛼(𝑖+𝛿−𝑗)𝐻(𝑥) = ∑  

∞

𝑘=0

(log α)𝑘

𝑘!
(𝑖 + 𝛿 − 𝑗)𝑘𝐻(𝑥)𝑘. 

The PDF of the BAP-H class reduces to 

  

     𝑓(𝑥) =
𝑕(𝑥)

𝛽(𝛿, 𝜂)
  ∑  

∞

𝑖,𝑗,𝑘=0

(−1)𝑖+𝑗,log(α)-𝑘+1(𝑖 + 𝛿 − 𝑗)𝑘

𝑘! (𝛼 − 1)𝑖+𝛿  

                        .
𝜂 − 1
    𝑖

/ (
𝑖 + 𝛿 − 1
         𝑗

) 𝐻(𝑥)𝑘. 

Then, we have   
  

     𝑓(𝑥) = ∑  

∞

𝑘=0

𝑏𝑘𝑔𝑘+1(𝑥) ,                                                                   (𝟏𝟎) 

  

 where  

  

𝑏𝑘 =
1

𝛽(𝛿, 𝜂)
    ∑  

∞

𝑖,𝑗=0

.
𝜂 − 1
     𝑖

/ (
𝑖 + 𝛿 − 1
       𝑗

)
(−1)𝑖+𝑗,log(α)-𝑘+1(𝑖 + 𝛿 − 𝑗)𝑘

(𝑘 + 1)! (𝛼 − 1)𝑖+𝛿
 

 and  

 𝑔𝑘+1(𝑥) = (𝑘 + 1)𝑕(𝑥)𝐻(𝑥)𝑘. 

𝑔𝑘+1(𝑥) is the exponentiated-H (exp-H) with power parameter (𝑘 + 1).  

Thus, several mathematical properties of the BAP-H family can be obtained 

simply from those of the exp-H family. Equation (10) is the main result of this 

section. 
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The CDF of the BAP-H family can also be expressed as a mixture of exp-H 

CDFs. By integrating (10) , we obtain the mixture representation  
  

     𝐹(𝑥) = ∑  

∞

𝑘=0

𝑏𝑘𝐺𝑘+1(𝑥),                                                                     (𝟏𝟏) 

 

where 𝐺𝑘+1(𝑥) = 𝐻(𝑥)𝑘+1 is the CDF of the exp-H with power parameter 

𝑘 + 1.  

4 Statistical Properties 

In this section, the main statistical properties of the proposed distribution 

family are presented. These include the derivation of the moments and the 

moment generating function (MGF), as well as the analysis of order statistics. 

Furthermore, the entropy measure is discussed to explore the uncertainty 

associated with the distribution. Finally, the quantile function is derived, which 

plays a key role in simulation and statistical 

4.1  Moment 

The r-th moment of 𝑋, denoted by 𝜇𝑟
′ , is given by:  

  

𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∑  

∞

𝑘=0

𝑏𝑘𝐸(𝑌𝑘+1
𝑟 ), 

where 𝑌𝑘+1  is an exp-H random variable with power parameter 𝑘 + 1.The 

n-th central moment of X, denoted by μn, is given by:  
  

𝜇𝑛 = 𝐸,(𝑋 − 𝜇1
′ )𝑛- = ∑  

𝑛

𝑟=0

.
𝑛
𝑟

/ (−𝜇1
′ )𝑛−𝑟𝐸(𝑋𝑟). 
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4.2  Moment Generating Function 

In probability theory and statistics, the MGF of a real-valued random 

variable is an alternative specification of its probability distribution. Thus, it 

provides the basis of an alternative route to analytical results compared with 

working directly with probability density functions or cumulative distribution 

functions. There are particularly simple results for the MGF of distributions 

defined by the weighted sums of random variables. However, not all random 

variables have MGF, see Hogg et al. (2005). 
 

The  MGF 𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) is given by:  
  

𝑀𝑋(𝑡) = ∑  

∞

𝑘=0

𝑏𝑘𝑀𝑘+1(𝑡), 

where 𝑀𝑘+1(𝑡) is the MGF of Yk+1. 
 

4.3  Order Statistics 

The order statistics are important in statistical theory. Let 𝑋1, … , 𝑋𝑛 be a    

random sample from the BAP-H family. The PDF of the 𝑖-th order statistic, 

𝑋𝑖:𝑛, is  

 

𝑓𝑋𝑖:𝑛
(𝑥)

=
𝑓(𝑥)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑  

𝑛−𝑖

𝑗=0

(−1)𝑗 (
𝑛 − 𝑖
     𝑗

) 𝐹(𝑥)𝑗+𝑖−1.    (12) 

The term 𝐹𝑋𝑖:𝑛
(𝑥)𝑗+𝑖−1 can be expressed as:  

    𝐹𝑋𝑖:𝑛
(𝑥)𝑗+𝑖−1 = [∑  

∞

𝑘=0

𝑏𝑘𝐻(𝑥)𝑘+1]

𝑗+𝑖−1 

.                                      (𝟏𝟑) 
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Using the identity (∑  ∞
𝑟=0 𝑏𝑟𝑢𝑟)𝑛 = ∑  ∞

𝑟=0 𝐶𝑛,𝑟𝑢𝑟 , (see Gradshteyn and Ryzhik, 

2014)  where the coefficients 𝐶𝑛,𝑟 are easily determined from the recurrence 

equation , we obtain  

  

𝐹𝑋𝑖:𝑛
(𝑥)𝑗+𝑖−1 = {∑  

∞

𝑘=0

𝑏𝑘 [𝐻(𝑥)
(𝑘+1)

𝑘 ]
𝑘

}

𝑗+𝑖−1

                                                       

= ∑  

∞

𝑘=0

𝐶𝑘,𝑖+𝑗−1 [𝐻(𝑥)
(𝑘+1)

𝑘 ]
𝑘

  .                                                                      (𝟏𝟒) 

Substituting (10) and (14) into (12) and using a power series expansion, the 

PDF of 𝑋𝑖:𝑛 can be expressed as  

  

𝑓𝑋𝑖:𝑛
(𝑥) = ∑  

𝑛−𝑖

𝑗=0

(−1)𝑗 (
𝑛 − 𝑖
     𝑗

)
1

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑  

∞

𝑘=0

𝐶𝑘,𝑖+𝑗−1𝑕𝑘+1(𝑥), 

  

where 𝑕k+1(𝑥) is the exp-H PDF with power parameter 𝑘 + 1. 

It follows that the PDF of BAP-H order statistics is a mixture of exp-H PDFs. 

Hence, the properties of 𝑋𝑖:𝑛 follow from the properties of 𝑋𝑘+1. 

4.4  Entropy 

 The Rényi entropy of a random variable X is defined by: 

 𝐼𝜃(𝑋) =
1

1−𝜃
𝑙𝑜𝑔(∫  

∞

−∞
𝑓(𝑥)𝜃 𝑑𝑥),    𝜃 > 0,    𝜃 ≠ 1. 
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 𝑓(𝑥)𝜃 = {
1

𝛽(𝛿, 𝜂)
    

log(α)

𝛼 − 1
𝑕(𝑥)𝛼𝐻(𝑥)     *

𝛼𝐻(𝑥) − 1

𝛼 − 1
+

𝛿−1

*1

−
𝛼𝐻(𝑥) − 1

𝛼 − 1
+

𝜂−1

}

𝜃

.    

Applying  the power series (9) in th following equation 

  

𝑓(𝑥)𝜃 = [
1

𝛽(𝛿, 𝜂)
]

𝜃

(
log(α)

𝛼 − 1
)

𝜃

𝑕(𝑥)𝜃𝛼𝜃 𝐻(𝑥)  ∑  

∞

𝑘=0

(−1)𝑘

(𝛼 − 1)𝑘+𝛿𝜃−𝜃
.

𝜃(𝜂 − 1)

     𝑘
/ 

               [𝛼𝐻(𝑥) − 1]
𝑘+𝜃𝛿−𝜃

. 
 

Hence 

,𝛼𝐻(𝑥) − 1-𝑘+𝛿𝜃−𝜃 = 𝛼(𝑘+𝛿𝜃−𝜃)𝐻(𝑥),1 − 𝛼−𝐻(𝑥)-𝑘+𝛿𝜃−𝜃 . 

Applying  the power series (9) in th following terme 
 

𝛼(𝑘+𝛿𝜃−𝜃)𝐻(𝑥),1 − 𝛼−𝐻(𝑥)-𝑘+𝛿𝜃−𝜃

= ∑  

∞

𝑗=0

(−1)𝑗 (
𝑘 + 𝛿𝜃 − 𝜃
        𝑗

) 𝛼(𝑘+𝛿𝜃−𝑗−𝜃)𝐻(𝑥). 

 

Then, we can write 

𝑓(𝑥)𝜃 = *
log(α) 𝑕(𝑥)

𝛽(𝛿, 𝜂)
+

𝜃

    ∑  

∞

𝑘,𝑗=0

.
𝜃(𝜂 − 1)

     𝑘
/ (

𝑘 + 𝛿𝜃 − 𝜃
       𝑗

)
(−1)𝑖+𝑗

(𝛼 − 1)𝑘+𝛿𝜃
𝛼,𝑘+𝛿𝜃−𝑗-𝐻(𝑥)

. 

Using the follow power series  

𝛼𝑞 = ∑  

∞

𝑘=0

(log α)k

𝑘!
𝑞𝑘, 𝑞 > 0. 
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Hence 

𝛼(𝑘+𝛿𝜃−𝑗)𝐻(𝑥) = ∑  

∞

𝑚=0

(log α)𝑚

𝑚!
(𝑘 + 𝛿𝜃 − 𝑗)𝑚𝐻(𝑥)𝑚. 

The PDF of the BAP-H class reduces to 
  

𝑓(𝑥)𝜃 = [
𝑕(𝑥)

𝛽(𝛿, 𝜂)
 ]

𝜃

 

∑  

∞

𝑘,𝑗,𝑚=0

(−1)𝑘+𝑗,log(α)-𝑚+𝜃(𝑘 + 𝛿𝜃 − 𝑗)𝑚

𝑘! (𝛼 − 1)𝑘+𝛿𝜃
.

𝜃(𝜂 − 1)

    𝑘
/ (

𝑘 + 𝛿𝜃 − 𝜃
         𝑗

) 𝐻(𝑥)𝑚. 

  

The Rényi entropy of the BAP-H family is given by  
  

    𝐼𝜃(𝑋) =
1

1 − 𝜃
log ( ∑  

∞

𝑚=0

𝑏𝑚 ∫  
∞

−∞

𝑕(𝑥)𝜃𝐻(𝑥)𝑚 𝑑𝑥),                 (𝟏𝟓) 

  

where  

 𝑏𝑚 =

,𝛽(𝛿, 𝜂)-−𝜃 ∑  ∞
𝑗,𝑘=0 (

𝑘 + 𝜃𝛿 − 𝜃
            𝑗

) .
𝜃(𝜂 − 1)
       𝑘

/
(−1)𝑗+𝑘,𝑙𝑜𝑔(𝛼)-𝑚+𝜃(𝑘+𝛿𝜃−𝑗)𝑚

𝑚!(𝛼−1)𝑘+𝛿𝜃
. 

4.5  Quantile Function 

To find the quantile function (QF) for this family of distributions, using 

the   inverse of the function 𝐻(𝑥) express 𝑥 in terms of 𝑝 to get the QF : 

 𝑄(𝑝) = 𝐻−1 .
log(1+𝐼𝑦

−1(𝑝;𝛿,𝜂)(𝛼−1))

log(𝛼)
/, 

where 𝐼𝑦
−1(𝑝; 𝛿, 𝜂) is the inverse of the regularized incomplete beta function. 
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5 Maximum Likelihood Estimation 

 Let 𝑥1, . . . . , 𝑥𝑛  be the observed random sample from the BAPEx 

distribution with parameters 𝛼, 𝜂, 𝜆 and 𝛿. 

Let 𝜽 = (𝛼, 𝜂, 𝜆, 𝛿𝑇)𝑇  be the (𝑝  × 1) parameter vector. Then, the 

log-likelihood function for 𝜽, say ℓ = ℓ(𝜽), is given by  
   

                    ℓ = −𝑛log ,𝛽(𝛿, 𝜂)- + 𝑛 log ,log(𝛼)- − 𝑛log(𝛼 − 1)

+ ∑ [log(𝜆 𝑒−𝜆 𝑥𝑖) + 𝑧𝑖𝑙𝑜𝑔(𝛼) + (𝛿 − 1)log (
𝛼𝑧𝑖 − 1

𝛼 − 1
)

𝑛

𝑖=1

+ (𝜂 − 1)log (1 −
𝛼𝑧𝑖 − 1

𝛼 − 1
)]. 

 

Th score vector components, say U(θ) = (
∂ℓ

∂θ
=

∂ℓ

∂α
,

∂ℓ

∂δ
,

∂ℓ

∂η

∂ℓ

∂λ
)T =

(Uα, Uδ, Uη, Uλ)T, 

are given by  

 𝑈𝛿 =
−𝑛𝑎1

𝛽(𝛿,𝜂)
+ ∑ log𝑛

𝑖=1 .
𝛼𝑧𝑖−1

𝛼−1
/, 

 𝑈𝜂 =
−𝑛𝑎2

𝛽(𝛿,𝜂)
+ ∑ log𝑛

𝑖=1 .1 −
𝛼𝑧𝑖−1

𝛼−1
/, 

  

  

𝑈𝛼 =
𝑛

𝛼log (𝛼)
−

𝑛

𝛼−1
+ ∑ [

𝑧𝑖

𝛼
+ (𝛿 − 1) .

𝑧𝑖 𝛼𝑧𝑖−1

𝛼𝑧𝑖−1
−

1

𝛼−1
/ − (𝜂 − 1)

𝛼𝑧𝑖log(𝛼)𝑥𝑖𝑒−𝜆𝑥𝑖

(𝛼−1)(1−
𝛼𝑧𝑖−1

𝛼−1
)
]𝑛

𝑖=1

, 

𝑈𝜆 = ∑ [
1

𝜆
− 𝑥𝑖 + 𝑥𝑖𝑒

−𝜆𝑥𝑖log(𝛼) + (𝛿 − 1)
𝛼𝑧𝑖log(𝛼)𝑥𝑖𝑒−𝜆𝑥𝑖

𝛼𝑧𝑖 − 1
− (𝜂 − 1)

𝛼𝑧𝑖log(𝛼)𝑥𝑖𝑒−𝜆𝑥𝑖

(𝛼 − 1) .1 −
𝛼𝑧𝑖 − 1
𝛼 − 1 /

]
𝑛

𝑖=1 , 
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where 

a1  =
∂β(δ,η)

∂δ
,  a2  =

∂β(δ,η)

∂η
 and 𝑧𝑖 = 1 − 𝑒−𝜆𝑥𝑖 .  Setting the nonlinear 

system of equations Uα = Uδ = Uλ = Uη = 0  and solving them 

simultaneously yields the  

MLE θ̂ = (α̂, δ̂, λ̂, η̂T)T  of the θ = (α, δ, λ, ηT)T. The model parameters are 

estimated using the MLE method by solving the first-order derivative equations 

of the log-likelihood function. Once the estimates are obtained, the Fisher 

information matrix is computed from the second derivatives (the negative 

Hessian) of the log-likelihood function. The inverse of this matrix represents 

the variance–covariance matrix of the estimators, from which the standard 

errors (SEs) are derived as the square roots of its diagonal elements. 

6.  Simulation Study 

              Now, we provided detailed simulation results to explore the 

performances of the ML estimation in estimating the parameters of the 

BAPEx model. We considered several sample sizes and different values of the 

parameters, that is, 𝑛 = *50,80,200,400+. The behavior of the different 

estimates is compared with respect to their: average absolute bias 

(|𝐵𝐼𝐴𝑆|), |𝐵𝐼𝐴𝑆| =
1

𝑁
∑𝑖=1

𝑁  |𝜽̂ − 𝜽|, mean square errors (MSE), 𝑀𝑆𝐸 =

1

𝑁
∑𝑖=1

𝑁  (𝜽̂ − 𝜽)2, and mean relative errors (MRE), MRE =
1

𝑁
∑𝑖=1

𝑁  |𝜽̂ − 𝜽|/𝜽. 

Table 2 show the simulation results, average ML estimates of the parameters, 

|𝐵𝐼𝐴𝑆|, MSE, and MRE, of the BAPEx parameters using different 

approaches. These results showed that estimates are very close to their true 
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values and have small biases, MSE and MRE. The results illustrated that the 

biases, MSE, and MRE decrease as 𝑛 increases, showing that the introduced 

estimators are consistent. The results were obtained through statistical 

analyses performed using the R software environment. 

Table 2: The AEs, MSE, BIAS and MRE of the BAPEx parameters for different 

values of the parameters and 𝑛. 

n 𝛼 = 0.4, 𝛿 = 1.5, 𝜂 = 1.75, 𝜆 = 1.75 

50 

AEs 

27.45821 2.07983 12.20087 2.78534 

80 1.47232 1.77045 2.13959 2.44588 

200 0.58832 1.56584 1.73166 2.01634 

400 0.48298 1.51885 1.73609 1.83471 

50 

MSE 

11.611 4.04283 91.14586 10.16723 

80 7.7943 1.35982 19.72764 5.81346 

200 0.75376 0.12031 0.50563 1.69564 

400 0.20903 0.03061 0.10045 0.47244 

50 

BAIS 

27.32195 0.83765 11.15317 1.36319 

80 1.31913 0.49489 0.97941 0.94933 

200 0.39946 0.21178 0.36307 0.47609 

400 0.24517 0.13021 0.21587 0.26146 

50 

MRE 

68.30488 0.55844 6.37324 0.77897 

80 3.29784 0.32992 0.55966 0.54247 

200 0.99864 0.14119 0.20747 0.27205 

400 0.61293 0.08681 0.12336 0.14941 

n 𝛼 = 1.5, 𝛿 = 0.5, 𝜂 = 0.75, 𝜆 = 0.75 

50 

AEs 

2.24801 0.53101 0.74150 0.94102 

80 1.94406 0.51455 0.74588 0.86309 

200 1.60473 0.50645 0.75122 0.79366 

400 1.51515 0.50389 0.75549 0.76296 

50 

MSE 

15.05972 0.02085 0.10078 0.44496 

80 12.67606 0.00906 0.06711 0.21826 

200 0.7864 0.00326 0.02421 0.07333 

400 0.25966 0.00146 0.01255 0.02638 

50 

BAIS 

1.34964 0.09877 0.19468 0.36022 

80 0.94719 0.07017 0.1613 0.27106 

200 0.46219 0.04372 0.10892 0.16314 

400 0.28944 0.02974 0.07755 0.10533 
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50 

MRE 

0.89976 0.19754 0.25957 0.48029 

80 0.63146 0.14033 0.21507 0.36141 

200 0.30813 0.08744 0.14523 0.21752 

400 0.19296 0.05948 0.1034 0.14044 

n 𝛼 = 0.25, 𝛿 = 0.6, 𝜂 = 0.6, 𝜆 = 0.25 

50 

AEs 

0.35154 0.66482 0.46038 0.44147 

80 0.27717 0.64664 0.49155 0.37917 

200 0.23563 0.61926 0.54155 0.31523 

400 0.22998 0.60912 0.56417 0.29873 

50 

MSE 

0.2982 0.1369 0.19342 0.22966 

80 0.21585 0.10004 0.16634 0.17268 

200 0.13157 0.05782 0.12188 0.10497 

400 0.09287 0.04544 0.09634 0.07884 

50 

BAIS 

0.27427 0.0438 0.05584 0.12292 

80 0.10271 0.02078 0.04366 0.06867 

200 0.02807 0.0063 0.02597 0.02723 

400 0.0134 0.00621 0.01778 0.02058 

50 

MRE 

1.19279 0.22816 0.32237 0.91865 

80 0.86341 0.16674 0.27723 0.69071 

200 0.52629 0.09636 0.20314 0.4199 

400 0.37149 0.07573 0.16057 0.31537 
 

7 An Application to Real Data 

In this section, The BAPEx model is fitted to real data and compared with 

other existing distributions. In order to compare the fits of the distributions, 

we consider various measures of goodness-of-fit including the Akaike 

information criterion (AIC) (Akaike, 1973),  Kolmogorov -Smirnov (K-S) 

statistics (with its p − value) and ℓ̂, where ℓ̂,  is the maximized log-likelihood. 

The dataset comprises of 74 observations, specifically referring to gauge 

lengths of 20 mm. The analysis of this data studied by Kundu and Raqab 

(2009).  Data set : The gauge lengths of 20 mm data: 1.312, 1.314, 1.479, 

1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 

2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 
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2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 

2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 

2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 

2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 

3.128, 3.233, 3.433, 3.585, 3.585.  Here, we use this data to compare the 

BAPEx model with other models, namely: generalized exponential (GEx) 

(Gupta and Kundun, 2001 ), Kumaraswamy transmuted-exponential (Kw-

TEx) (Afify et al., 2016), generalized transmuted exponential (GTEx) (Nofal 

et al., 2017), generalized transmuted generalized exponential (GTGEx) (Nofal 

et al., 2017), alpha power exponentiated exponential (APExEx) (Afify et al., 

2020), the exponentiated generalized alpha power exponential (EGAPEx) 

(ElSherpieny and Almetwally, 2022), Alpha power exponentiated inverse 

exponential (APEIEx) (Kargboet al., 2023) and exponentiated generalized 

Weibull exponential distribution (EGWEx) ( Abonongo and Abonongo, 

2024), distribution. We compare the fits of the BAPEx model with the 

EGAPEx, KWT-Ex, APExEx, APEIEx, GEx, GT-GEx, EGWEx and GT-

GGEx models. Table 3 list the numerical values of AIC, K-S (P-value) and ℓ̂ 

for the models fitted to the gauge lengths of 20 mm. The figures in this table 

indicate that the BAPEx model has the lowest values for goodness-of-fit 

statistics for the gauge lengths of 20 mm among the fitted models. So, the 

BAPEx model could be chosen as the best model. The MLEs and their 

corresponding standard errors of the model parameter are given in Table 4. 

The results were obtained through statistical analyses performed using the R 

software environment. 
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Table 3: Findings from the fitted distributions to the gauge lengths of 20 mm 

dataset. 
  Model AIC ℓ̂ K-S(P-value) 

BAPEx 110.3749 51.18743 0.0560 (0.9743) 

EGAPEx 110.7216 51.36079 0.0571 (0.9722) 

Kw-TEx 111.0739 51.5369 0.0583 (0.9720) 

GT-GEx 113.2988 52.64939 0.0687 (0.8765) 

EGWEx 114.2961 52.14805 0.0578 (0.9657) 

GT-GGEx 115.2988 52.6493 0.0686 (0.8766) 

APExEx 115.3082 54.65412 0.0697 (0.8648) 

GEx 121.6065 58.80327 0.0953 (0.5120) 

APEIEx 297.6644 145.8322 0.4695(0.0030) 

Table 4: MLEs and the corresponding SEs of the gauge lengths of 20 mm data. 

  Model parameter (SEs) 

BAPEx 

α 𝛿 𝜂 λ   

0.211 2568.307 4.306 429.294   

(0.631) (3925.267) (8.924) (4318.758)   

EGAPEx 

s Ρ Β λ   

5256.025 8865 5.716 0.08997   

(170.3) (1819.498) (1.145 ) (0.00649)   

GT-GEx 

λ α B a   

2.819 108.731 754.477 0.8419   

(0.304) (73.534) (612.794) (0.093)   

APEIEx 

α a B    

3236.676 1.265 0.231    

(3786.408) (24.369) (4.459)    

GT-GGEx 

λ a B α S  

10.394 0.46 72.577 0.841 2.819  

(482.8) (485.8) (3371) (0.09313) (0.3041)  

 

Kw-TEx 

a b λ α   

5.896 78.44 19.273 0.009   

(0.519) (206.267) (7.366) (0.0517)   

EGWEx 

α d Β b c a 

0.381 4.499 1.9123 1.596 6.607 1.735 

(10.1068) (1.351) (108.873) (0.907) (742.411) (81.823) 

APExEx 

α a C    

46.324 2.521 91.046    

(65.8188) ( 0.2173) (52.846)    

GEx α S     
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89.431 2.019     

(32.472) (0.172)     
 

 

 

 

 

 
 

Figure 3: The fitted BAPEx PDF, CDF, SF, and P–P plots for gauge lengths dataset. 

8 Conclusions  

 In this paper, we introduce a new four-parameter distribution called the 

beta alpha power exponential (BAPEx) distribution. The statistical properties of 

the  new model are derived. Further, the BAPEx distribution parameters are 

estimated by the maximum likelihood method. A simulation study is conducted 

to explore the performance of the maximum likelihood method. Finally, the 

practical importance of the BAPEx distribution is studied by analyzing a real-life 

dataset. Goodness-of-fit statistics for the analyzed data set showed that our 

BAPEx distribution provides a better fit in comparison with other rival 

distributions. 

Figure 3 illustrates the goodness-of-fit of the BAPEx distribution to the observed 

data. The PDF, CDF and SF plots show a close agreement between the empirical and 

theoretical curves. Moreover, the P–P plot demonstrates that the observed and expected 

values are nearly aligned along the 45-degree line, confirming the adequacy of the 

BAPEx model in describing the data. 
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