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Abstract

In this paper, we consider the estimation of the parameters of the
generalized inverted exponential distribution when data are generalized hybrid
type-l1 censored samples. The maximum likelihood estimators of the
parameters and the confidence interval have been obtained. Additionally, the
parameters have been estimated using the Bayesian method with the squared
error and linear-exponential loss functions , considering a gamma prior and
the corresponding posterior distributions, Bayes estimators of the unknown
parameters cannot be calculated in closed forms. The Markov Chain Monte
Carlo method, namely the Metropolis-Hastings algorithm, has been used to
derive approximations for the simulation study.We achieve the highest
posterior density (HPD) credible intervals.The proposed estimators in the
maximum likelihood and Bayesian methods have been compared. Finally, a

real data set has been analyzed for illustrative purposes.

Keywords Generalized inverted exponential distribution,Generalized
hybrid type-l1 censored samples,Maximum likelihood estimation,Bayes

estimation,Markov Chain Monte Carlo.
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1 Introduction

There is no doubt that estimations based on complete samples are more
accurate. However, it is inevitable to use censoring for lifetime experiments
due to time constraints and expense reduction. type-I and type-Il censoring are
usually considered as two fundamental methods to conduct lifetime
experiments, Where we terminate these experiments at a certain time point or
upon the occurrence of a certain number of failures. With the rapid
development of science and technology, products have higher reliability and
longer life spans, resulting in a longer time of life-testing to obtain sufficient
failure samples.

In order to cut down the life-testing duration, Epstein (1954) carried out a
hybrid type-I censoring scheme that could be considered as a combination of
those two fundamental censoring schemes .Under this scheme, lifetime
experiments operate after a specific point of time and the number of failures is
pre-fixed. As long as either of these occurs, the test will be terminated.
However, this scheme also has limitations as it has a possibility that extremely
few failures occur before the pre-determined time. As a result, it may be
impractical to make statistical inferences under such a scheme.

In order to overcome this disadvantage and improve the efficiency of
estimators in the lifetesting experiment as well as to guarantee that a certain
number of failures appear before the end of the experiment as well as saving
the time of testing and the cost resulted from failures of units,Chandrasekar et
al .(2004) introduced a generalized hybrid type-1 censoring scheme (GHCS-

1).Generalized hybrid type-I censoring assures a minimum number of failures,
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Which could mitigate the short back that exists in hybrid type-I censoring .
Some authors have studied the estimation parameters of some distribution
under GHCS-I, such as Ahmad (2019), Rabie and Li(2019), Zhang et al.
(2021),Dhamecha et al. (2021), Mahmoud et al. (2021),and Liu and Zhang
(2021).

The GHCS-I described as follows : Fix integers k,m € (1,2,...,n) such that k
<m <n,and time T € (0,0).The termination time of the experiment is T* =
min{Xm),max{Xq, T }+}.1f the k — th failure occurs before time T , terminate the
experiment at min{Xm), T} . If the k — th failure occurs after time T . terminate
the experiment at X .

Under the GHCS-I, the observed data will be one of the following cases of

observations:-
Case-1:{X@) < - < Xp} if T <X < X(m)
Case-11:{x(1) < - < x(k) < x(d) < - <x(m)}, if x(k) < T < x(m)
Case-HE{X(1) < - <x(k) < x(m)}, if x(k) <x(m) <T.

The likelihood function can be rewritten as follows:

oy Ty f@)[L = F(T)]", d=kk+1,.,m-1

(n k)' H, lf(I(T )){ F(‘T(R‘))]”_ka d=01.,k—-1
L=
= n:”)' Hm ( )){1 . F( (m))]n*m! d=m

The generalized inverted exponential distribution (GIED) was introduced
first by Abouammoh and Alshingiti (2009). It was a generalized form of the
inverted exponential distribution .The GIED has good statistical and reliability
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properties. It fits various shapes of failure rates . Dey et al. (2014),the GIED is
widely applied in research related life testing, horse racing, supermarket
queues, sea currents, wind speeds, and many more Kotz and Nadarajah
(2000). the probability density function (pdf) , cumulative distribution

function(cdf) ,respectively, as follows;

fo) = (—9) X (_—8) [1 o (__9)

F(z)=1- {1—0){1) (_Tg)r r>0, a,f>
Hiz) = (Zf) (-1)" 0 3)

The o is shape parameter and @ is scale parameter. Figure (1) the PDF of
GIED and figure (2) the hazard rate function of GIED.

a—1

x>0, «,f>

(2)

Parameters
a=0.5,8=05
w— 0=0.5,8=15

PDF

W= a=1.5,8=05
a=1.58=15

Figure 1: PDF of GIED
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Parameters

a=0.5, 8=05

HRF

== a=05, 8=15
= a=15, 6=05
a=1.5, 8=15

Figure 2: hazart rate function of GIED

This paper is organized as follows: In Section 2, the maximum likelihood
estimates for unknown parameters under the GHCS-I are derived. In Section
3,asymptotic confidence interval. In Section 4, Bayes estimates of the
unknown parameters under squared error (SE) and linearexponential (LINEX)
loss function by using Markov Chain Monte Carlo (MCMC) method . In
Section 5, a simulation study is implemented . In Section 6 ,the analysis of
real date set is presented . In Section 7, concluding remarks are discussed .
2  Maximum likelihood estimation

In this section we drive the maximum likelihood estimator (MLE) of the
unknown parameters of GIED («,#) under GHCS-I, the likelihood function for
three cases by equation (1)
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Based on the pdf and the cdf of GHCS-I using GIED by equations (2) and

(3), respectively, then the likelihood function can be rewritten as follows

@) (03 (VI (3) oo ()] [room (-2)]

The logarithm of equation (4) can be written as:

InL <klna +kln6 — 92( ) Zln( >+(a—1)§;1n{1—exp(—%)] N

a1 (2]

Taking derivatives with respect to « and 6 of equation (5), and equality to
zero, we obtain the following

85:’4 _ ( ) Zln [1 — exp (—ﬁ) T(n=k)ln [1 - (_‘%)L 0 (6)

Oln L LA k_(1/x;)exp ( 9/1;) A (1/x) exp (_9“/1_.16)

Z T Z " +a(n—k) . —0

a0 ( ) i=1 ( ?) i=1 [1 — exp ( 9/3)5)] [1 — exp (—H/H)] .
—k

Zf‘zl In [1 —exp (—%)} + (n—k)In [1 — exp (—%)] (8)

& =

Similarly, for case Il and Il in a GHCS-I, the estimate of o and @ can be

written as:
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—d o
Z:'l:] 1"{]_03‘[)(—%)} (n—d) 111[] (XI)(—%)} casell

(3{ - —17TL
ry 11{ —pr(—ie”+(n—m)ln[l—cxp(—%)]
9),
caselll.
and
( .
d 1/a; —0/x; 1/T —-0/T
(—% ! (a—l)z(/L)exp(A/r)—F&(ﬂ—d)(/ )BXP(A/ );msdf
i, v = i—1 1 —exp (—9/3‘:.,:) 1 —exp (—H/T)
m m m_(1/x;) exp ( H/xz) (1/x,) exp (——é/xyn)
(a—1) Z + a(n —m) - casel 1.
0 i1 i—1 1 —exp ( 9/1i) 1 —exp (g—g/a;n)

(10)

Equation 10 is very hard to evaluate theoretically and a numerical

procedure is needed to solve this equation numerically.

3 Asymptotic Confidence Interval
The asymptotic variance-covariance matrix of (*a, 8 )is obtained by
inverting the information matrix with elements that are negatives of expected

values of the second order derivatives of logarithms of the likelihood function.

L) =BGl ij=12.0

-1
0

a? da0l
_0*InL _ 9*InlL

9000 00? ]a@ﬁé

{_anL _PmLy!
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V(o)  Cov(a,0)

I' =
Cov(a,0) V(0

The element of Fisher information matrix are given as follows:

Casel
PInL  —k
da? N a? y

k

InL YR A o Y

a 1=1

2 L k ) . ) .
881(;12L :_k —(a-1) Zifge_wm[l B 6—9/.7:5]—2 _afn— A:)w;ze_za/‘”’“[l o e—ﬂ/xk}—Q

62 i=1
Casell

d*In L - —d

da? a2,

0*In L d 1, —b0/z; —0/z71—1 14T ir1-1
dadl = arte L — e )T 4 (n— d)T e T — 70T

d
B (d _ 1) Z mi_ze_gg/mi[l . 6—9/3:,:]—2 . O[(ﬂ- N d)T_2€_29/T[1 . B—E?/T]—‘z
i=1

& InL —d
oz 62
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Caselll

P*InL —m
da? 42,

i “m

PInL - ; 3/ i/ i/
n :Z T.—]e—t?/:z',_“ o e—ﬁ/.i,}—l + (n o TTI-).T_I(?_H/'LT" {1 o (E—B/EJ,m]—l

dadl

i=1

m

Pl — 2 9/
e L (—1) Zm;gc’?ﬁ/“[l — e VT2 _q(n —m)x 2e 20

a 92 6"2 ‘m

=1

[1 o e*é/.r:m]72

Thus,two-sided 100(1 — y)% confidence interval of a and & respectively,

&+ 21/ Vi(a) 0+ 2 V()

Where y is a significance level.

4  Bayesian estimation

In this section, assume that a and 6 are independent and follow a gamma

prior distribution:

b(ll1 a;—1 !
mla) = ——a™ e " a1, b >0
( ) F((L]) y U1, V1

[);2 az—1

’ﬂ'(g) = m E’._b29,(1,2._ bg >0
Thus, the joint prior distribution is obtained as

byt b2
10) = 2 _qulgulemhiathed) g b g, by 0
Tr((}’, ) T ((Ll) T ((IQ)G € , 1,01, 02,02

and the likelihood function is shown as
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—0
a0 S THECGW W d <k

L= 3 gigmatete SO T CEW e Dwp ™ k<d<m (qp)
amgrel ST (F)m“ Dy an= ’”), d>m

)

—0 -0 B _
Wy=1—e5) Wy =1—e5) Wy =1 — T W,, =1 —elan),
where

On the basis of Bayesian method, multiply equation (11) by equation (12) to
obtain the joint posterior distribution

Kfl k+r).1719k+r12 1 —[(bla-}-bgﬂ) (T—!)] 1—[1‘&‘(L)pp;_(&—'[)]/{/rﬂ(n—k-) d<k
a

7'1'(0{,9|515) = ¢ K- 1 d+m 19d+02 1(*[(bla+b29)+(ﬁ)] Hi(m?)”f a— I)VVQ(” d) k < d < m (13)
K-lgmtai—1gm+az—1, [(l}[(!+f)29)+(ﬁ)] 1—[ ?(L)Hr a— 1)”’ J’C:l n— m). d>m

where K could be written in the following form

H

fOO fOO ak+ﬂ1—10k+012—1 —[(blr}‘+h29 r_ H (%) Ct l)p{/(}(?i k)dade d < k

0 0 - T}

K — fo fODD OcH—c.-,] 19.:,!—9—.32 1 —[(bya+b20)+( i)] H (_15) /]/(0. I)I/Vn(” d) d(}(]’.g, I S d<m
IO ]D a m+u1 19m+02 1 [(bla+b29)+( £ )] H n Lz IV’ o— ])]/1; el Thm)d(}fd@. d > m

The Bayesian estimator of two unknown parameters under SE loss
functions as follows,
Z o0 7 ©
o"gs=E(a|x) = an(o,0 | X)dadd

KL Jo aktmgrtente Ot GO Ly wie= e Ndadg,  d < k
Gps = { K1 fo fooo qdtargdtaz—1, [(bla+b20)+(— H (—%)IV a— 1)1L ra(n— rl')d do, k<d<m
K ]0 ]0 O,m-l-ulgm-ﬁ—rzg 1 7[(bla+b29 1—[ m (i—lg)W; o— I)I/Vﬂ;:, n—m) d()ﬁd@, d 2 m

i

and
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Ops = E(0 | ) = / / O (v, 0 | x)dodf

K 1f0 JD k+rl1 lgk-l—uz [(bla+520)+ 9)]1_[

(

N P _ b bal
Ops = { K 1f0 fooo qdtai—1gdtaz ~[(bratb0)+(; ‘)]H (
-1 J“ f oMta—lgmtaz, [(b1a+b20)+(1_i)] HI
0 0 « I

% W, (2= I)I’V”(T' " dodd, d<k
: weweNgads,  k<d<m
(L%)W “ l)ﬂ o™ dadd,  d > m

-_/

The Bayesian estimator of two unknown parameters under LINEX loss

functions as follows,

1
apr, = —EIHE( ) = ——ln/ / (e, 0 | 2)dadd

2

0
K1 ]0 ]D Jrtai—lgktaz—1, *[((b1+h)a+629 )]H (1? (a— 1”/}. n— k)dadé’ d<k

)W,
app = K71 7 [ atta-tgite-] g (b tatba0) (0] Tpd ()W, (a DW= dadg, k<d<m
Ii_l f() j;) ?TH‘CH 19m+a2 1 —[((b1+h)a+b28) +(T)] l—L (T%Q)H/:(a 1)[/)‘—/;;(1‘!. m)dOdQJ d 2 m

and

0

A 1 1 0o o0
Opr, = _EIDE (e x) = _EIH/ / e (a0 | x)dadd
’ - Jo
8

i o— C
K[ [0 aktar—ighton—tg (bt bty .]Hf‘ LWIWE N dado,  d <k
" 0
HBL = K1 ]0 IO rH-(L] 19(14-(12 lo —[(bra+(b2+h 9)+( Hf(i_lz)]” o— 1)”/”(” —d) (f}'dg k < d<m
- i T T
-1 J"D f() qmtai— 1917?-}-02 1( [(byat(ba+h)8)+ 1 ]1—[ (Lz)” a— 1H;?c;{m n)d(lfdtf') (J{ETH

1 T

Bayes estimator (“ags,a"sL.6 85,0 5L) Cannot be expressed in closed form,so
we need to employ some approximation method to compute the estimate .\We
propose to use the MCMC method to obtain the Bayes estimator and highest
posterior density (HPD) credible intervals of the unknown parameters . We
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use Metropolis- Hastings (M-H) algorithm as a general MCMC method with

wide applications . The steps of M-H algorithm are carried out as follows:

Algorithm

Step 1: Start with an arbitrary starting point A2 = (¢ 6) for which
fF(A9 ] z) > 0gtep2: SetJ = 1.
Step3: generate A with proposal distribution

(a) Evaluate the acceptance probabilities by

P ()\(']_1),)\*) = min 1, J0) ( l ]

J(AU=D|z)

(b) Generate a sample from uniform distribution, i.e., U ~ U(0,1).

(© U <p (A" X) “accept proposal and set A9 = i+, else set A9 =
A9 Step 4: SetJ=J+1

Step 5: Repeat steps 2-4 for M times until to get M

samples. Step 6. Bayesian estimates of the parameter 4

under SE loss function

)‘BS - M— \_‘r(()) Z] M (0) +‘]

where, M@ is a burn-in period.
Step:Bayesian estimates of the parameter A under LINEX loss function

M
\ —1 1 § : —hALD
ApL = Tl In m e Jh 79 0

J=M)+1
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Step 10: A 100(1 — 7)% Bayesian of 4 can be obtained from the (3) and ! — %) sample
guantiles of the empirical posterior pdf of MCMC draws

5 Monte Carlo Simulations

To evaluate the effectiveness of the GIED’s parameters a and 6 developed
In the previous sections, in this section, we will perform different Monte Carlo

simulations.

5.1 Simulation scenarios

To examine the behavior of the suggested point and interval estimators of «
and @ obtained by maximum likelihood and Bayesian estimation methods,
from GIED(2,1) population, we replicate the GHCS-I 2,000 times. All
proposed comprehensive Monte Carlo simulations are conducted based on
different combinations of n(total sample size) and T(threshold point) such as
n(=30,50,80) and T(=1.5,2.5). Additionally, for each setting level of n and T,
different choices of k,m(effective sample sizes) are also considered.

In frequentist examination, from the 1,000 GHCS-I samples, the MLEs as

well as 95% ACls

(obtained from NA and NL methods) of a and 8 are computed via *maxLik’
package proposed by Henningsen and Toomet(2011). In Bayesian analysis, to
highlight the effects of the priors, two informative sets of hyper-parameters

are used; namely:
e Prior-1: (as,a,) = (10,5) and by = b, = 5;

° Prlor—z (alraZ) = (20,10) and b]_: b2= 10
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It should be noted here that all specified hyper-parameter values of a;and b;
for i = 1,2, associated with the unknown parameters o and 6 are chosen in
such a way that the prior average is equal to the expected value of the
corresponding unknown parameter; see Kundu (2008). It is important to
mention here, if there is no prior information about the parameters of interest,
that the likelihood method may be better than the Bayes method because the
latter is computationally more expensive. Via the proposed Metropolis-
Hastings algorithm sampler, we generate 12,000 MCMC samples of « and &
from their conditional posterior distributions, and then the first 2,000 variates
are ignored as burn-in. Then, using the remaining 10,000 MCMC samples, the
desired computations of the proposed Bayes MCMC estimates (from SE and
LINEX (for h(= —2,+2)) loss functions) and 95% BCI/HPD interval estimates
of a and 6 are obtained via the ’coda’ package proposed by Plummer et
al.(2006). All computations are performed using R 4.2.2 software by using
two mainly statistical packages called *maxLik’ and ’coda’. Specifically, the

average estimates (Av.Es) of « and 0 are given by

2000 2000

1 , 1 »
IR o g _ (0
AVE® = 2000 2. andAV.E(” = 2000 2.0

i=1 =1

respectively, where “a®” (as an example) is the estimate of « at ith sample.
The root mean squared errors (RMSESs) and mean relative absolute biases

(MRABS) for all point estimates of o and & are given, respectively, by
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\V; vu ] 200

7/ O
2000 U %) \JZU()();(H 0)

o) = Q Wloo Z ((1:‘(’:) — 01)2
RMSE(” i=1 and RMSE( :
and
1 2000 ‘d‘(i) . O;| 2000 |9”(1:) 9| ;
[0 —af )
MRAB( m = o and M RAB(
=1

Moreover, to compare the acquired interval estimates of a and 6, we
consider two criteria, namely: average interval lengths (AILs) and coverage

percentages (CPs) as

2000 2000

1 1
(95%(“‘) = onnn (Mdm — Law (95%(9) = annn (U(jm - [ré(i))
AlL 2000 ; ) andAIL 2000 ;
and
1 2000
(a v 5% (0) = 1 0
CPW @) 20002 LUyt (“) and CPM( )= 3000 ca (500 2500) (&)

respectively, where 1%(:) is an indicator, (L(:),U(:)) denotes the (lower,upper)

interval limits of parameter.
5.2  Simulation discussions

In Tables 1-2, the Av.Es, RMSEs, and MRABSs of a and 9 are reported. On
the other hand, in Tables 3-4, the AlLs and CPs of « and & are provided.
From Tables 1-4, in terms of lowest RMSE, MRAB, and AIL values and

highest CP values, we provide the following observations:
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« All offered estimates of « or 8 have displayed satisfactory behavior.

« As n increases, all point (or interval) estimates of a or 6 operate
effectively, produce superior results, and hold the consistency feature.
So, to get more accurate estimates, practitioners tend to increase the size
of n appropriately.

« Comparing the proposed point estimation methodologies, due to the
Bayes estimates being expressed using gamma density priors, the Bayes
(point/interval) estimates using the Metropolis-Hastings procedure
outperformed well the point and interval estimated developed from the
maximum likelihood approach.

« Comparing the proposed loss functions, it is clear that the estimates
produced by the LINEX loss of a or 0 are overestimates when h < 0;
they are also underestimates when h > 0, and both perform better
compared to those developed from the SE loss. ¢ Due to the fact that the
variance of Prior-2 is less than the variance associated with Prior-1, it is
noticeable that Bayesian point (or credible interval) estimates based on
Prior-2 are superior to Prior-1 for all unknown parameters.

« Comparing the proposed interval estimation approaches, it is clear that:

- The asymptotic interval estimates of « or 8 constructed by ACI-NA
showed better behavior than those constructed by its competitive
ACI-NL method.

- The credible interval estimates of a or & constructed by HPD
interval method showed better behavior than those constructed by its
competitive BCI method.
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o As T increases, it can be noted that:

- The RMSEs and MRABs for all maximum likelihood (or Bayes’
MCMC) estimates of o tend to increase while those of # tend to

decrease.

- The AILs for ACI-NA (or ACI-NL) estimates of a increased while
those obtained from BCI (or HPD interval) method decreased.

- The AlLs for all asymptotic (or credible) interval estimates of 4

decreased.

- The CPs for ACI-NA (or ACI-NL) estimates of « decreased while

those obtained from BCI (or HPD interval) method increased.

- The CPs for all asymptotic (or credible) interval estimates of 6

increased.
- The CPs of HPD intervals (in most situations) are almost closely (or

greater than) to the specified nominal level 95% compared to others.

« Lastly, in the context of data acquired through the generalized type-I
hybrid censored plan, we recommend using the Bayes frameworks with

Metropolis-Hastings sampling to evaluate the GIED parameters.
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Table 1: The Av.Es (1% column), RMSEs (2" column) and MRABs (3"
column) of « and # when T = 1.5.

n (k,m) Par. MLE SE LINEX (h = LINEX (h =
—2) +2)
Prior-1
Prior-2
30 (10,15) oY 1.701 1.611 0.804 1.978 0.373 0.162 2.002 0.319 0.156 1.952 0.364 0.180
1.898 0.228 0.051 1.922  0.084 0.039 1.845 0.198 0.077
a9 1.945 0.947  0.945 1.855 0.918 0.856 0.931 0.350 0.266 1.032 0.232 0.213
1.463 0.745 0.740 1.094  0.279 0.242 1.006 0.133 0.150
(13,20) o 1.445 1.231 0.606 1.967 0.259 0.126 1.992 0.196 0.098 1.936 0.218 0.102
1.944 0.219 0.043 1.964 0.064 0.028 1.900 0.169 0.057
0 1.708 0.711 0.708 1.603 0.684 0.605 0.944 0.283 0.222 1.020 0.241 0.179
1.508 0.540  0.548 1.098  0.211 0.185  0.989 0.087  0.092
(20,25) o 1.925 0.773 0.356 1.731 0.227 0.092 1.930 0.145 0.074 1.774 0.119 0.063
1.969 0.190 0.034 1.988 0.035 0.012 1.680 0.073 0.037
[’} 1.646 0.647  0.646 1.586 0.612 0.589 0.996  0.261 0.202 1.057 0.247  0.109
1.511 0.512 0.484 1.140 0.214 0.165 1.071 0.079 0.071
50 (10,20) @ 1.802 1.562  0.778 2.261 0.358  0.152 2.313  0.294 0.146  2.204 0.327  0.160
1.958 0.220 0.047 1.985 0.054 0.023 1.894 0.183 0.060
[ 1.787 0.787  0.787 1.739 0.776  0.739 0.832 0.313 0.251 1.078 0.224 0.138
1.740 0.679  0.680 1.141 0.184 0.141 1.051 0.063 0.060
(20,30) o 1.789  1.205 0.597 2.095 0.255 0.122 2,136 0.137 0.068 1.940 0.150 0.057
2.006 0.213 0.037 2.025 0.040 0.018 2.031 0.143 0.044
[/} 1.518 0.529 0.518 1.488 0.520 0.488 0.875 0.255 0.203 1.096 0.233 0.156
1.456 0.457 0.456 1.165 0.196 0.163 1.066 0.078 0.076
(30,40) @ 1.807 0.751 0.322 1.789 0.189  0.067 1.893  0.084 0.050 1.772 0.095 0.037
1.933 0.170  0.032 1.953  0.027 0.011 1.805 0.030 0.015
[/} 0.947 0.281 0.223 1.112 0.269 0.151 1.095  0.201 0.149 1.087 0.114  0.087
1.148 0.216  0.132 1.149  0.193 0.120 1.024 0.050 0.043
80 (10.30) o 1.532 1.365  0.664 2.036 0.350 0.136 1.968 0.219 0.101 2.087 0.229 0.113
2.005 0.216  0.045 2.032  0.046 0.021 1.943 0.170 0.058
a9 1.757 0.759 0.757 1.602 0.724 0.602 0.679 0.257 0.162 1.213 0.214 0.070
1.160 0.467 0.463 0.799 0.165 0.110 1.132 0.031 0.025
(30.50) o 1.831 1.045  0.496 1.676 0.248 0.100 1.707  0.127 0.062 1.880 0.145 0.055
1.944 0.208 0.036 1.971 0.039 0.014 1.641 0.095 0.037
a9 1.382 0.418 0.412 1.412 0.413 0.382 1.107 0.236 0.126 0.858 0.209 0.121
1.355 0.355 0.355 1.163 0.182 0.107 1.082 0.029 0.026
(50,70) o 1.526 0.564 0.252 2.081 0.176 0.062 2.008 0.052 0.024 1.905 0.064 0.032
1.977  0.162  0.030 2.123  0.019 0.004  2.007 0.023 0.009
[’ 1.223 0.222 0.161 1.144 0.212 0.142 1.120 0.176 0.102 1.109 0.093 0.076
1.148 0.189 0.071 0.959 0.149 0.097 1.035 0.035 0.024
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Table 2: The Av.Es (1% column), RMSEs (2" column) and MRABs (3"

column) of « and # when T = 2.5.

n (k,m) Par. MLE SE LINEX (h=-2) LINEX (h=+2)
Prior-1
Prior-2
30 (10,15) v 1.501 1.707  0.853 1.728 0.866 0.385 1.756  0.639 0.316 1.697 0.817 0.455
1.885 0.230 0.057 1.908 0.096 0.046 1.835 0.202 0.082
0 1.934 0.937 0.934 1.843 0.901 0.843 0.710 0.343 0.244 1.216 0.226 0.206
1.734  0.744 0.734 1.175 0.252 0.176 1.150 0.125 0.132
(15,20) o 1.861 1.398 0.696 1.600 0.454 0.205 1.644 0.365 0.178 1.559 0.444 0.221
1.922 0.222 0.044 1.941 0.072 0.033 1.882 0.172 0.059
7] 1.674 0.675 0.674 1.599 0.665 0.600 0.762 0.281 0.212 1.165 0.203 0.165
1.514 0.517 0.514 1.104 0.205 0.121 1.092 0.082 0.082
(20,25) v 1.935 0.936  0.457 1.230 0.255  0.105 1.368 0.160 0.076 1.090 0.182 0.075
1.927  0.198 0.037 1.945 0.037  0.017 1.895 0.150 0.054
0 1.646  0.627 0.605 1.586 0.572 0.579 1.057 0.247 0.190 1.140 0.214 0.094
1.511 0.512 0.511 0.917 0.183 0.132 1.068 0.074 0.068
50 (10,20) o 1.780 1.668 0.833 2.084 0.590 0280 2.111 0.527 0.262 2.053 0.592 0.295
1.953 0.227 0.049 1.979 0.075 0.036 1.892 0.186 0.065
7} 1.619 0.773 0.724 1.724 0.724 0.658 0.788 0.307 0.231 1.138 0.173 0.085
1.453 0.492 0.488 1.084 0.180 0.103 1.060 0.055 0.051
(20,30) [o1 1.607 1.363  0.680 1.762 0.355  0.143 1.821 0.248 0.122 1.686 0.318 0.157
1.979 0.218 0.043 2.004 0.049 0.025 1.924 0.154 0.058
7 1.456 0.494  0.456 1.489 0.489 0.481 0.826 0.280 0.187 1.164  0.189 0.107
1.417  0.418 0.417 1.023 0.171 0.115 1.076  0.069 0.066
(30,40) o 1.640 0.818 0.379 1.439  0.244 0.085 1.475 0.095 0.057 1.873 0.143 0.053
1.910 0.190 0.036 1.929 0.028 0.012 1.898 0.128 0.050
0 1.099 0.237 0.177 0.865 0.212 0.148 1.122 0.172 0.122 1.081 0.092 0.085
1.150 0.176 0.130 0.902 0.157 0.100 1.043 0.044 0.035
80 (10,30) o1 1.270 1.511 0.750 2.036 0.486  0.222 2.087 0.405 0.202 1.968  0.483 0.241
2.005 0.224  0.048 2.032 0.063  0.029 1.943 0.174 0.064
0 1.711 0.715 0.711 1.596 0.692 0.596 0.678 0.255 0.158 1.034 0.207 0.067
1.488 0.464 0.453 1.091 0.156 0.090 1.009 0.030 0.023
(30,50) o 1.872 1.241 0.612 1.557 0.323 0.126 1.596 0.182 0.090 1.518 0.304 0.151
1.931 0.212 0.039 1.957 0.046 0.021 1.869 0.145 0.055
7} 1.279 0.296  0.289 1.289 0.289  0.279  0.759 0.217 0.122 1.098 0.178 0.087
1.269 0.270  0.269 1.115 0.144  0.084 0.994  0.027 0.024
(50,70) o1 1.344 0.688  0.329 1.915 0.194  0.075 1.955 0.055  0.029 1.409 0.116 0.040
1.967 0.179 0.034 1.995 0.022 0.008 1.850 0.065 0.028
7} 1.107 0.218 0.134 1.067 0.209 0.125 1.086 0.168 0.095 1.076 0.084 0.073
1.060 0.168 0.068 1.107 0.117 0.085 1.024 0.031 0.022
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Table 3: The AlLs (1st column) and CPs (2nd column) of 95% asymptotic and
credible intervals of aoand 6 when T = 1.5.

n (k,m) Par. ACI-NA BClI

ACI-NL HPD

Prior-1  Prior-2

30 (10,15) a 2,241  0.892 0.866 0.922 0.540 0.931
2,451 0.886 0.851 0.923 0.483 0.933

2} 1.223  0.912 1124 0916 0.580 0.933

1.244 0911 1.117 0917 0.532 0.936

(15,20) o 1.398 0.910 0.802 0.925 0.487 0.934
1.561  0.904 0.749 0.928 0.436 0.936

[ 1.113 0915 1.109 0918 0.575 0.934

1.179  0.914 1.088 0.919 0.516 0.937

(20,25) o 0.822 0918 0.636 0932 0.442 0.936
0.858 0917 0.613 0.933 0.398 0.939

0 1.097 0.917 1.080 0.919 0.567 0.934

1.134 0.915 1.034 0.920 0.508 0.938

50 (10,20) o 1.682  0.903 0.834 0924 0.522 0.932
1.883 0.895 0.820 0.925 0.461 0.935

7 0.994 0919 0937 0921 0.560 0.935

1.036  0.917 0.920 0.922 0.501 0.938

(20,30) a 1.236 0912 0.741 0.927 0.476 0.934
1.409 0.907 0.731 0.928 0.421 0.936

0 0.879 0.922 0.798 0.925 0.554 0.935

0.917 0.919 0.785 0.926 0.485 0.939

(30,40) o 0.713 0921 0.565 0934 0.431 0.937
0.795 0919 0.559 0935 0.388 0.941

[ 0.852  0.923 0.700 0.928 0.517 0.938

0.893 0.921 0.675 0.930 0.466 0.941

80  (10,30) « 1.526  0.906 0.819 0.925 0.503 0.933
1.685 0.900 0.805 0.926 0.445 0.935

0 0.776  0.927 0.689 0.929 0.498 0.939

0.798 0.925 0.657 0932 0.444 0.943

(30,50) o 1.045 0.915 0.670 0.930 0.457 0.935
1.125 0.913 0.655 0.931 0.406 0.938

2 0.670 0.930 0.657 0.932 0.486 0.940

0.688 0.928 0.634 0.933 0.438 0.944

(50,70) «a 0.652 0.924 0.528 0936 0.403 0.939
0.686 0.922 0.499 0937 0.324 0.943

0 0.622 0933 0.612 0934 0.456 0.941

0.633 0.930 0.585 0.936  0.429 0.945
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Table 4: The AlLs (1st column) and CPs (2nd column) of 95% asymptotic and
credible intervals of aoand 6 when T = 2.5.

n (k,m) Par. ACI-NA BClI

ACI-NL HPD

Prior-1  Prior-2

30 (10,15) a 1.178  0.908 1.025 0.916 0.545 0.930
1.272  0.906 0.937 0918 0.520 0.931

2} 1.127  0.914  1.150 0918  0.547 0.935

1.228 0913 1.115 0.919 0.516 0.937

(15,20) o 1.013  0.912 0.847 0.922 0.495 0.932
1.037  0.911 0.822 0.923 0.443 0.935

[ 0.974 0918 1.105 0.920 0.565 0.936

1.032 0.916 1.080 0.921 0.507 0.938

(20,25) o 0.659 0.922 0.646 0931 0.451 0.935
0.682 0921 0.624 0931 0411 0.937

0 0.921 0.919 1.051 0.921 0.553 0.936

0.988 0918 1.001 0922 0.502 0.938

50 (10,20) o 1.107  0.910 0.918 0918 0.529 0.931
1.154 0.908 0.895 0.921 0470 0.933

7 0.904 0921 0981 0924 0.548 0.937

0.941 0919 0.917 0.924 0.486 0.940

(20,30) a 0.817 0917 0.775 0.926 0.480 0.932
0.876 0915 0.761 0.927 0.428 0.936

0 0.761  0.925 0.937 0926 0.522 0.938

0.794  0.923 0.765 0.929 0.458 0.942

(30,40) o 0.644 0923 0576 0934 0.442 0.936
0.661 0922  0.569 0934 0.406 0.938

[ 0.730  0.926  0.657 0.931 0.495 0.939

0.766 0.925 0.644 0.933 0.449 0.943

80 (10,30) o  L066 0.911 0.869 0.921 0.509 0.931
1.109  0.910 0.851 0922 0464 0.934

0 0.692 0029 0611 0932 0475 0.942

0710 0.927 0.573 0935 0.420 0.945

(30,50) x 0.729 0.919 0.689 0.930 0.472 0.934
0.749  0.916 0.674 0.930 0.416 0.937

[Z] 0.584 0.933 0.521 0.935 0.452 0.942

0.599 0932 0518 0936 0417 0.945

(50,70) o  0.586 0928 0555 0935 0409 0.939
0.507 0.927 0519 0.936 0.378 0941

0 0520 0035 0498 0936 0424  0.943

0.536  0.933 0.479 0.938 0.385 0.946
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6 Cancer Data Analysis

To show the adaptability of methodologies proposed to a real-life situation,
in this section, a real-life data set gathered from the clinical sector is
discussed. Now, we shall examine all proposed theoretical results of o and 6
based on a cancer data set that represents the survival times for 44 patients
suffering from head and neck cancer (HNC) disease and treated using
radiotherapy and chemotherapy. In Table 5, the complete survival time points
of the HNC data set are presented. This data set was first discussed by Efron
(1988).

Table 5: Survival times (in days) of 44 HNC patients.

12.20, 23.56, 23.74, 25.87, 31.98, 37.00, 41.35, 47.38, 55.46,
58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84.00, 92.00, 94.00,
110.0, 112.0, 119.0, 127.0, 130.0, 133.0, 140.0, 146.0, 155.0,
159.0, 173.0, 179.0, 194.0, 195.0, 209.0,
249.0, 281.0, 319.0, 339.0, 432.0, 469.0, 519.0, 633.0, 725.0, 817.0, 1776

Before proceeding, we first need to see if the proposed GIED lifetime
distribution is appropriate to fit the HNC data set or not. To achieve this, the
MLEs «" and 6 are obtained and used to compute the Kolmogorov-Smirnov
(K-S) distance and its associated p-value. As a result, the MLEs (along with
their standard-errors (St.Ers)) of o and 6 are 1.1677(0.2432) and
84.844(16.504),  respectively, while the K-S(p-value) becomes
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0.1072(0.6538). It is clear that the estimated p-value is far away from the pre-
specified significance level; therefore, we have evidence to conclude that the
GIED is a proper lifetime model to fit the HNC data.

* - GIE
00 0.2 04 06 08 1.0 0 500 1000 1500
OCP X
(@) PP (b) Reliability

Figure 3: The estimated/empirical PP and reliability plots of the GIE model
from the HNC data set.

Additionally, from the entire HNC data, two goodness-of-fit diagrams are
plotted and shown in Figure 3, namely: estimated/empirical probability-
probability (PP) and estimated/empirical reliability function. All sup-plots
displayed in Figure 3 support the same fitting result. Again, using the

complete HNC data, the contour plot of the log-likelihood function is
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displayed in Figure 4 in turn to show the existence and uniqueness of the
offered MLEs & and 6. The maximum of the log-likelihood contour is
denoted by point-x in the innermost. Figure 4 shows that the MLES «" and 6
existed and are unique. For forthcoming statistical computations, we
recommend considering the estimates “a ~= 1.1677 and 6 ~= 84.844 as

suitable starting points.

theta

alpha

Figure 4: The contour plot of the GIE model from HNC data set.

Now, from the original HNC data set, three artificial GHCS-1 samples (based

on (k,m) =
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(10,30) and different choices of T) are generated; see Table 6. For S;for i =
1,2,3, the maximum likelihood and Bayes estimates (in addition to their
St.Ers) as well as the asymptotic and credible interval estimates (in addition to
their interval lengths (ILs)) of a and & are computed and presented in Tables
7-8, respectively. Because we don’t have any information about the GIED
parameters o and 6 from the HNC data set, we use the improper gamma priors
by setting a;= 0 and b;= 0 for i = 1,2,3. Due to computation logic, the hyper-
parameter values a;and b; for i = 1,2,3 are putted to be 0.001. Via the proposed
Metropolis-Hastings algorithm, to carry out the Bayes’ point (or credible)
estimates, we generate 50,000 iterations and then discard the first 10,000
iterations as burn-in. Using the remaining 40,000 MCMC iterations, the
Bayes’ point estimates are evaluated using SE and LINEX (h(=-3,-0.03,+3))
loss functions.
Table 6: Three artificial GHCS-I samples from HNC data.

Sample T(d) Data
Sy 50(8) 12.2, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36

S, 115(20) 12.2, 23.56, 23.74, 25.87, 31.98,
37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46,
78.26, 74.47, 81.43, 84, 92, 94, 110, 112
S;  180(30)12.2, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36,
63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 94,
110, 112,
119, 127, 130, 133, 140, 146, 155, 159,
173, 179
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In terms of the lowest St.Er values, Table 7 indicates that the acquired Bayes
MCMC estimates

(developed from the LINEX loss) of o and 6 performed superiorly compared
to those developed from the SE loss, while both outperformed those generated
from the maximum likelihood method. On the other hand, in terms of the
shortest IL values, Table 8 exhibits that the HPD interval estimates of « or 6
perform well than those created by the BCI method, while both behave better
than those obtained from the ACI-NA (or ACI-NL) approach. All facts
provided in Tables 7-8 confirm the same simulation comments reported in
Subsection 5.2.

Table 7: The point estimates of « and & from HNC data.

Sample Par. MLE SE LINEX (h=-3)
LINEX (h =-0.03)
LINEX (h = +3)
Est. St.Er Est. St.Er Est. St.Er
S1 o 05087 0.8736 0.4114 0.1307 0.4230 0.0857

0.4115 0.0972

0.4002 0.1085

0 54.037 42273 53.888 0.1936 53.911 0.1262
53.888 0.1487

53.865 0.1721

So a 0.7074 0.8025 0.6132 0.1297 0.6253 0.0821
0.6134 0.0941

0.6014 0.1060

0 63.896 41.220 63.752 0.1862 63.773 0.1228
63.752 0.1436

63.731 0.1647

S3 o 09951 0.7962 0.8899 0.1429 0.9039 0.0912
0.8900 0.1051

0.8759 0.1192

o 76.927 25462 76.783 0.1862 76.804 0.1230

76.784 0.1438

76.763 0.1648
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Table 8: The 95% interval estimates of « and 6 from HNC data.

Sample Par. ACI-NA BCI

ACI-NL HPD

Low.  Upp. IL Low.  Upp. IL

Si a 0.2019 0.1130 0.9044 0.2513 0.5905 0.3392
0.7913 0.2337 1.1073 0.2476 0.5853 0.3377

0 10.526  33.405 74.668 53.626 54.128 0.5020

41.263 36.887 79.160 53.624 54.101 0.4773

So Q 0.1951 0.3251 1.0898 0.4467 0.7940 0.3472
0.7647 0.4120 1.2145 0.4464 0.7918 0.3454

0 10.341 43.627 84.164 63.525 63.985 0.4600

40.537 46.527 87.747 63.534 63.993 0.4583

S3 a 0.1981 0.6070 1.3833 0.7008 1.0822 0.3814
0.7763 0.6737 1.4699 0.6968 1.0705 0.3736

0 6.4663 64.2564 89.601 76.560 77.016 0.4565

25.348 65.243 90.705 76.566 77.019 0.4524

Moreover, some important properties for the MCMC iterations of « and 6,
namely: mean, mode, 1st quartile (Q.), 2nd quartile (Q,), 3rd quartile (Q3),
standard deviation (St.D), and skewness (Skew.) are calculated and recorded
in Table 9. As we anticipated, all results presented in Table 9 supported our
findings shown in Table 7.

251



Table 9: Several statistics for 40,000 MCMC iterations of « and & from HNC

data.
Sample Par. Mean Mode (o5 - Q3 St.D Skew.
Sy a 041136 0.27291 0.35024 0.40964 0.46920 0.08723 0.20229
f#  53.8878 53.6256 53.8085 53.8893 53.9713 0.12372 -0.06508
Sa a  0.61324 0.55611 0.55454 0.61193 0.67123 0.08923 0.11404
@  63.7517 63.4225 63.6722 63.7504 63.8313 0.11825 0.03975
S3 a  (0.88087 0.84384 0.82540 0.88932 0.95304 0.09660 0.04343
#  T76.7835 76.4544 T76.7041 T76.7838 76.8630 0.11807 0.03598

To demonstrate MCMC iteration convergence, S; for i = 1,2,3, Figure 5

shows the density and trace plots of « and & based on their staying 40,000

iterations. For specification, for each unknown parameter, the solid and dotted

lines represent Bayes’ estimate through the SE loss and BCI estimates,

respectively. Figure 5 indicates that the MCMC technique works effectively,

and the recommended burn-in sample size is effective. It indicates that the

collected MCMC iterations of « or @ are relatively symmetrical. Moreover, all

facts shown in Figure 5 support the same numerical findings reported in Table

9. Ultimately, the results of the proposed inference methodologies through the

analysis of the HNC data furnish a good demonstration of the proposed

generalized inverted exponential lifetime model.
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Figure 5: The density (left) and trace (right) plots for 40,000 MCMC iterations

of o and @ from HNC data.
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7  Conclusion

In this paper, This study examined the estimation of the parameters of the
generalized inverted exponential distribution under the GHCS-I. Maximum
likelihood estimates and Bayesian estimates were derived using gamma priors,
and the Markov Chain Monte Carlo method was applied for Bayesian
inference.The results indicate that Bayesian estimates, particularly those
obtained through the Metropolis-Hastings algorithm, outperformed the MLEs
in terms of root mean square errors, mean relative absolute biases, and interval
coverage probabilities. Bayesian estimates with higher prior precision
demonstrated superior performance.Moreover, the LINEX loss function
estimates provided more robust parameter estimates compared to the squared
error loss function, especially under different censoring schemes. The analysis
of a real cancer survival dataset confirmed the applicability and effectiveness
of the proposed estimation methods. The generalized inverted exponential
model provided a good fit to the data, as demonstrated by goodness-of-fit tests
and parameter estimates. This validates the proposed methodology for lifetime
data analysis under censoring schemes, making it a valuable approach for

reliability and survival studies.
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