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Abstract 

In this paper, we consider the estimation of the parameters of the 

generalized inverted exponential distribution when data are generalized hybrid 

type-I censored samples. The maximum likelihood estimators of the 

parameters and the confidence interval have been obtained. Additionally, the 

parameters have been estimated using the Bayesian method with the squared 

error and linear-exponential loss functions , considering a gamma prior and 

the corresponding posterior distributions, Bayes estimators of the unknown 

parameters cannot be calculated in closed forms. The Markov Chain Monte 

Carlo method, namely the Metropolis-Hastings algorithm, has been used to 

derive approximations for the simulation study.We achieve the highest 

posterior density (HPD) credible intervals.The proposed estimators in the 

maximum likelihood and Bayesian methods have been compared. Finally, a 

real data set has been analyzed for illustrative purposes. 

Keywords Generalized inverted exponential distribution,Generalized 

hybrid type-I censored samples,Maximum likelihood estimation,Bayes 

estimation,Markov Chain Monte Carlo. 
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1 Introduction 

There is no doubt that estimations based on complete samples are more 

accurate. However, it is inevitable to use censoring for lifetime experiments 

due to time constraints and expense reduction. type-I and type-II censoring are 

usually considered as two fundamental methods to conduct lifetime 

experiments, Where we terminate these experiments at a certain time point or 

upon the occurrence of a certain number of failures. With the rapid 

development of science and technology, products have higher reliability and 

longer life spans, resulting in a longer time of life-testing to obtain sufficient 

failure samples. 

In order to cut down the life-testing duration, Epstein (1954) carried out a 

hybrid type-I censoring scheme that could be considered as a combination of 

those two fundamental censoring schemes .Under this scheme, lifetime 

experiments operate after a specific point of time and the number of failures is 

pre-fixed. As long as either of these occurs, the test will be terminated. 

However, this scheme also has limitations as it has a possibility that extremely 

few failures occur before the pre-determined time. As a result, it may be 

impractical to make statistical inferences under such a scheme. 

In order to overcome this disadvantage and improve the efficiency of 

estimators in the lifetesting experiment as well as to guarantee that a certain 

number of failures appear before the end of the experiment as well as saving 

the time of testing and the cost resulted from failures of units,Chandrasekar et 

al .(2004) introduced a generalized hybrid type-I censoring scheme (GHCS-

I).Generalized hybrid type-I censoring assures a minimum number of failures, 
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Which could mitigate the short back that exists in hybrid type-I censoring . 

Some authors have studied the estimation parameters of some distribution 

under GHCS-I, such as Ahmad (2019), Rabie and Li(2019), Zhang et al. 

(2021),Dhamecha et al. (2021), Mahmoud et al. (2021),and Liu and Zhang 

(2021). 

The GHCS-I described as follows : Fix integers k,m ∈ (1,2,...,n) such that k 

< m < n,and time T ∈ (0,∞).The termination time of the experiment is T∗ 
= 

min{x(m),max{x(k),T}}.If the k − th failure occurs before time T , terminate the 

experiment at min{x(m),T} . If the k − th failure occurs after time T . terminate 

the experiment at x(k) . 

Under the GHCS-I, the observed data will be one of the following cases of 

observations:- 

Case-I:{x(1) < ··· < x(k)}, if T < x(k) < x(m) 

Case-II:{x(1) < ··· < x(k) < x(d) < ··· < x(m)}, if x(k) < T < x(m) 

Case-III:{x(1) < ··· < x(k) < x(m)}, if x(k) < x(m) < T. 

The likelihood function can be rewritten as follows; 

  (1) 

The generalized inverted exponential distribution (GIED) was introduced 

first by Abouammoh and Alshingiti (2009). It was a generalized form of the 

inverted exponential distribution .The GIED has good statistical and reliability 



228 

properties. It fits various shapes of failure rates . Dey et al. (2014),the GIED is 

widely applied in research related life testing, horse racing, supermarket 

queues, sea currents, wind speeds, and many more Kotz and Nadarajah 

(2000). the probability density function (pdf) , cumulative distribution 

function(cdf) ,respectively, as follows; 

  0                       (2) 

 0                                       (3) 

The α is shape parameter and θ is scale parameter. Figure (1) the PDF of 

GIED and figure (2) the hazard rate function of GIED. 

 

Figure 1: PDF of GIED  
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Figure 2: hazart rate function of GIED 
 

This paper is organized as follows: In Section 2, the maximum likelihood 

estimates for unknown parameters under the GHCS-I are derived. In Section 

3,asymptotic confidence interval. In Section 4, Bayes estimates of the 

unknown parameters under squared error (SE) and linearexponential (LINEX) 

loss function by using Markov Chain Monte Carlo (MCMC) method . In 

Section 5, a simulation study is implemented . In Section 6 ,the analysis of 

real date set is presented . In Section 7, concluding remarks are discussed . 

2 Maximum likelihood estimation 

In this section we drive the maximum likelihood estimator (MLE) of the 

unknown parameters of GIED (α,θ) under GHCS-I, the likelihood function for 

three cases by equation (1) 
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Based on the pdf and the cdf of GHCS-I using GIED by equations (2) and 

(3), respectively, then the likelihood function can be rewritten as follows 

 

The logarithm of equation (4) can be written as: 

 

Taking derivatives with respect to α and θ of equation (5), and equality to 

zero, we obtain the following 

 = 0 (6)   

 

  (8)    

Similarly, for case II and III in a GHCS-I, the estimate of α and θ can be 

written as: 
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(9) ,

 caseIII. 

and 

 

(10) 

Equation 10 is very hard to evaluate theoretically and a numerical 

procedure is needed to solve this equation numerically. 

3 Asymptotic Confidence Interval 

The asymptotic variance-covariance matrix of (ˆα,θ
ˆ
)is obtained by 

inverting the information matrix with elements that are negatives of expected 

values of the second order derivatives of logarithms of the likelihood function. 
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The element of Fisher information matrix are given as follows: 

CaseI 

, 

, 

. 

CaseII 

, 

, 

. 
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CaseIII 

, 

, 

. 

Thus,two-sided 100(1 − γ)% confidence interval of α and θ respectively, 

 ,  

Where γ is a significance level. 

4 Bayesian estimation 

In this section, assume that α and θ are independent and follow a gamma 

prior distribution: 

 

 

Thus, the joint prior distribution is obtained as 

 .                      (11) 

and the likelihood function is shown as 
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 (12) 

where 

 On the basis of Bayesian method, multiply equation (11) by equation (12) to 

obtain the joint posterior distribution 

 

where K could be written in the following form 

 

The Bayesian estimator of two unknown parameters under SE loss 

functions as follows, 

Z ∞ Z ∞ 

 αˆBS = E(α | x) = απ(α,θ | x)dαdθ 

 0 0 

 

and 
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The Bayesian estimator of two unknown parameters under LINEX loss 

functions as follows, 

 

 

and 

 

 

Bayes estimator (ˆαBS,αˆBL,θ
ˆ
BS,θ

ˆ
BL) cannot be expressed in closed form,so 

we need to employ some approximation method to compute the estimate .We 

propose to use the MCMC method to obtain the Bayes estimator and highest 

posterior density (HPD) credible intervals of the unknown parameters . We 
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use Metropolis- Hastings (M-H) algorithm as a general MCMC method with 

wide applications .The steps of M-H algorithm are carried out as follows: 

Algorithm 

Step 1: Start with an arbitrary starting point λ
(0) 

= (α
(0)

,θ
(0)

) for which 

Step2: Set J = 1. 

Step3: generate λ
(∗) 

with proposal distribution 

. 

(b) Generate a sample from uniform distribution, i.e., U ∼ U(0,1). 

(c) If , accept proposal and set λ
(J) 

= λ∗, else set λ
(J) 

= 

λ
(J−1)

. Step 4: Set J = J + 1 

Step 5: Repeat steps 2-4 for M times until to get M 

samples. Step 6: Bayesian estimates of the parameter λ 

under SE loss function , 

 

where, M
(0) 

is a burn-in period. 

Step:Bayesian estimates of the parameter λ under LINEX loss function , 

, 
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 Step 10: A 100(1 − γ)% Bayesian of λ can be obtained from the  and  sample 

quantiles of the empirical posterior pdf of MCMC draws 

5 Monte Carlo Simulations 

To evaluate the effectiveness of the GIED’s parameters α and θ developed 

in the previous sections, in this section, we will perform different Monte Carlo 

simulations. 

5.1 Simulation scenarios 

To examine the behavior of the suggested point and interval estimators of α 

and θ obtained by maximum likelihood and Bayesian estimation methods, 

from GIED(2,1) population, we replicate the GHCS-I 2,000 times. All 

proposed comprehensive Monte Carlo simulations are conducted based on 

different combinations of n(total sample size) and T(threshold point) such as 

n(=30,50,80) and T(=1.5,2.5). Additionally, for each setting level of n and T, 

different choices of k,m(effective sample sizes) are also considered. 

In frequentist examination, from the 1,000 GHCS-I samples, the MLEs as 

well as 95% ACIs 

(obtained from NA and NL methods) of α and θ are computed via ’maxLik’ 

package proposed by Henningsen and Toomet(2011). In Bayesian analysis, to 

highlight the effects of the priors, two informative sets of hyper-parameters 

are used; namely: 

• Prior-1: (a1,a2) = (10,5) and b1 = b2 = 5; 

• Prior-2: (a1,a2) = (20,10) and b1 = b2 = 10. 
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It should be noted here that all specified hyper-parameter values of ai and bi 

for i = 1,2, associated with the unknown parameters α and θ are chosen in 

such a way that the prior average is equal to the expected value of the 

corresponding unknown parameter; see Kundu (2008). It is important to 

mention here, if there is no prior information about the parameters of interest, 

that the likelihood method may be better than the Bayes method because the 

latter is computationally more expensive. Via the proposed Metropolis-

Hastings algorithm sampler, we generate 12,000 MCMC samples of α and θ 

from their conditional posterior distributions, and then the first 2,000 variates 

are ignored as burn-in. Then, using the remaining 10,000 MCMC samples, the 

desired computations of the proposed Bayes MCMC estimates (from SE and 

LINEX (for h(= −2,+2)) loss functions) and 95% BCI/HPD interval estimates 

of α and θ are obtained via the ’coda’ package proposed by Plummer et 

al.(2006). All computations are performed using R 4.2.2 software by using 

two mainly statistical packages called ’maxLik’ and ’coda’. Specifically, the 

average estimates (Av.Es) of α and θ are given by 

 2000 2000 

 Av.E(  andAv.E(  

 i=1 i=1 

respectively, where ˘α
(i) 

(as an example) is the estimate of α at ith sample. 

The root mean squared errors (RMSEs) and mean relative absolute biases 

(MRABs) for all point estimates of α and θ are given, respectively, by 
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v  v u 

2000 u 

 RMSE(ˇ  and RMSE( , 

and 

 and MRAB(  .  MRAB(ˇ

i=1 

Moreover, to compare the acquired interval estimates of α and θ, we 

consider two criteria, namely: average interval lengths (AILs) and coverage 

percentages (CPs) as 

 AIL ) and AIL  

and 

 CP ) and CP  

respectively, where 1⋆(·) is an indicator, (L(·),U(·)) denotes the (lower,upper) 

interval limits of parameter. 

5.2 Simulation discussions 

In Tables 1-2, the Av.Es, RMSEs, and MRABs of α and θ are reported. On 

the other hand, in Tables 3-4, the AILs and CPs of α and θ are provided. 

From Tables 1-4, in terms of lowest RMSE, MRAB, and AIL values and 

highest CP values, we provide the following observations: 
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• All offered estimates of α or θ have displayed satisfactory behavior. 

• As n increases, all point (or interval) estimates of α or θ operate 

effectively, produce superior results, and hold the consistency feature. 

So, to get more accurate estimates, practitioners tend to increase the size 

of n appropriately. 

• Comparing the proposed point estimation methodologies, due to the 

Bayes estimates being expressed using gamma density priors, the Bayes 

(point/interval) estimates using the Metropolis-Hastings procedure 

outperformed well the point and interval estimated developed from the 

maximum likelihood approach. 

• Comparing the proposed loss functions, it is clear that the estimates 

produced by the LINEX loss of α or θ are overestimates when h < 0; 

they are also underestimates when h > 0, and both perform better 

compared to those developed from the SE loss. • Due to the fact that the 

variance of Prior-2 is less than the variance associated with Prior-1, it is 

noticeable that Bayesian point (or credible interval) estimates based on 

Prior-2 are superior to Prior-1 for all unknown parameters. 

• Comparing the proposed interval estimation approaches, it is clear that: 

– The asymptotic interval estimates of α or θ constructed by ACI-NA 

showed better behavior than those constructed by its competitive 

ACI-NL method. 

– The credible interval estimates of α or θ constructed by HPD 

interval method showed better behavior than those constructed by its 

competitive BCI method. 
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• As T increases, it can be noted that: 

– The RMSEs and MRABs for all maximum likelihood (or Bayes’ 

MCMC) estimates of α tend to increase while those of θ tend to 

decrease. 

– The AILs for ACI-NA (or ACI-NL) estimates of α increased while 

those obtained from BCI (or HPD interval) method decreased. 

– The AILs for all asymptotic (or credible) interval estimates of θ 

decreased. 

– The CPs for ACI-NA (or ACI-NL) estimates of α decreased while 

those obtained from BCI (or HPD interval) method increased. 

– The CPs for all asymptotic (or credible) interval estimates of θ 

increased. 

– The CPs of HPD intervals (in most situations) are almost closely (or 

greater than) to the specified nominal level 95% compared to others. 

• Lastly, in the context of data acquired through the generalized type-I 

hybrid censored plan, we recommend using the Bayes frameworks with 

Metropolis-Hastings sampling to evaluate the GIED parameters.  
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Table 1: The Av.Es (1
st 

column), RMSEs (2
nd 

column) and MRABs (3
rd 

column) of α and θ when T = 1.5. 

n (k,m) Par. MLE SE LINEX (h = 

−2) 

LINEX (h = 

+2) 

    Prior-1 

Prior-2 
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Table 2: The Av.Es (1
st 

column), RMSEs (2
nd 

column) and MRABs (3
rd 

column) of α and θ when T = 2.5. 

n (k,m) Par. MLE SE LINEX (h = −2) LINEX (h = +2) 

    Prior-1 

Prior-2 
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Table 3: The AILs (1st column) and CPs (2nd column) of 95% asymptotic and 

credible intervals of α and θ when T = 1.5. 

n (k,m) Par. ACI-NA  BCI 

  ACI-NL  HPD 

Prior-1 Prior-2 
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Table 4: The AILs (1st column) and CPs (2nd column) of 95% asymptotic and 

credible intervals of α and θ when T = 2.5. 

n (k,m) Par. ACI-NA  BCI 

  ACI-NL  HPD 

Prior-1 Prior-2 
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6 Cancer Data Analysis 

To show the adaptability of methodologies proposed to a real-life situation, 

in this section, a real-life data set gathered from the clinical sector is 

discussed. Now, we shall examine all proposed theoretical results of α and θ 

based on a cancer data set that represents the survival times for 44 patients 

suffering from head and neck cancer (HNC) disease and treated using 

radiotherapy and chemotherapy. In Table 5, the complete survival time points 

of the HNC data set are presented. This data set was first discussed by Efron 

(1988). 

Table 5: Survival times (in days) of 44 HNC patients. 

 

12.20, 23.56, 23.74, 25.87, 31.98, 37.00, 41.35, 47.38, 55.46, 

58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84.00, 92.00, 94.00, 

110.0, 112.0, 119.0, 127.0, 130.0, 133.0, 140.0, 146.0, 155.0, 

159.0, 173.0, 179.0, 194.0, 195.0, 209.0, 

249.0, 281.0, 319.0, 339.0, 432.0, 469.0, 519.0, 633.0, 725.0, 817.0, 1776 

 

Before proceeding, we first need to see if the proposed GIED lifetime 

distribution is appropriate to fit the HNC data set or not. To achieve this, the 

MLEs αˆ and θ
ˆ 
are obtained and used to compute the Kolmogorov-Smirnov 

(K-S) distance and its associated p-value. As a result, the MLEs (along with 

their standard-errors (St.Ers)) of α and θ are 1.1677(0.2432) and 

84.844(16.504), respectively, while the K-S(p-value) becomes 
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0.1072(0.6538). It is clear that the estimated p-value is far away from the pre-

specified significance level; therefore, we have evidence to conclude that the 

GIED is a proper lifetime model to fit the HNC data. 

  

 

 0.0 0.2 0.4 0.6 0.8 1.0 0 500 1000 1500 

 OCP x 

 (a) PP (b) Reliability 

Figure 3: The estimated/empirical PP and reliability plots of the GIE model 

from the HNC data set. 

Additionally, from the entire HNC data, two goodness-of-fit diagrams are 

plotted and shown in Figure 3, namely: estimated/empirical probability-

probability (PP) and estimated/empirical reliability function. All sup-plots 

displayed in Figure 3 support the same fitting result. Again, using the 

complete HNC data, the contour plot of the log-likelihood function is 

GIE 
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displayed in Figure 4 in turn to show the existence and uniqueness of the 

offered MLEs αˆ and θ
ˆ
. The maximum of the log-likelihood contour is 

denoted by point-x in the innermost. Figure 4 shows that the MLEs αˆ and θ
ˆ 

existed and are unique. For forthcoming statistical computations, we 

recommend considering the estimates ˆα ∼= 1.1677 and θ
ˆ ∼= 84.844 as 

suitable starting points. 

 

alpha 

Figure 4: The contour plot of the GIE model from HNC data set. 

Now, from the original HNC data set, three artificial GHCS-I samples (based 

on (k,m) = 
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(10,30) and different choices of T) are generated; see Table 6. For Si for i = 

1,2,3, the maximum likelihood and Bayes estimates (in addition to their 

St.Ers) as well as the asymptotic and credible interval estimates (in addition to 

their interval lengths (ILs)) of α and θ are computed and presented in Tables 

7-8, respectively. Because we don’t have any information about the GIED 

parameters α and θ from the HNC data set, we use the improper gamma priors 

by setting ai = 0 and bi = 0 for i = 1,2,3. Due to computation logic, the hyper-

parameter values ai and bi for i = 1,2,3 are putted to be 0.001. Via the proposed 

Metropolis-Hastings algorithm, to carry out the Bayes’ point (or credible) 

estimates, we generate 50,000 iterations and then discard the first 10,000 

iterations as burn-in. Using the remaining 40,000 MCMC iterations, the 

Bayes’ point estimates are evaluated using SE and LINEX (h(=-3,-0.03,+3)) 

loss functions. 

Table 6: Three artificial GHCS-I samples from HNC data. 

 

 

S2 115(20) 12.2, 23.56, 23.74, 25.87, 31.98, 

37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 

78.26, 74.47, 81.43, 84, 92, 94, 110, 112 

 S3 180(30)12.2, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 

63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 94, 

110, 112, 

119, 127, 130, 133, 140, 146, 155, 159, 

173, 179 
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In terms of the lowest St.Er values, Table 7 indicates that the acquired Bayes 

MCMC estimates 

(developed from the LINEX loss) of α and θ performed superiorly compared 

to those developed from the SE loss, while both outperformed those generated 

from the maximum likelihood method. On the other hand, in terms of the 

shortest IL values, Table 8 exhibits that the HPD interval estimates of α or θ 

perform well than those created by the BCI method, while both behave better 

than those obtained from the ACI-NA (or ACI-NL) approach. All facts 

provided in Tables 7-8 confirm the same simulation comments reported in 

Subsection 5.2. 

Table 7: The point estimates of α and θ from HNC data. 

Sample Par. MLE SE LINEX (h = −3) 

LINEX (h = −0.03) 

LINEX (h = +3) 

  Est. St.Er Est. St.Er Est. St.Er 
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Table 8: The 95% interval estimates of α and θ from HNC data. 

Sample Par.  ACI-NA   BCI  

   ACI-NL   HPD  

  Low. Upp. IL Low. Upp. IL 

 

 

Moreover, some important properties for the MCMC iterations of α and θ, 

namely: mean, mode, 1st quartile (Q1), 2nd quartile (Q2), 3rd quartile (Q3), 

standard deviation (St.D), and skewness (Skew.) are calculated and recorded 

in Table 9. As we anticipated, all results presented in Table 9 supported our 

findings shown in Table 7. 
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Table 9: Several statistics for 40,000 MCMC iterations of α and θ from HNC 

data. 

 

 

 

To demonstrate MCMC iteration convergence, Si for i = 1,2,3, Figure 5 

shows the density and trace plots of α and θ based on their staying 40,000 

iterations. For specification, for each unknown parameter, the solid and dotted 

lines represent Bayes’ estimate through the SE loss and BCI estimates, 

respectively. Figure 5 indicates that the MCMC technique works effectively, 

and the recommended burn-in sample size is effective. It indicates that the 

collected MCMC iterations of α or θ are relatively symmetrical. Moreover, all 

facts shown in Figure 5 support the same numerical findings reported in Table 

9. Ultimately, the results of the proposed inference methodologies through the 

analysis of the HNC data furnish a good demonstration of the proposed 

generalized inverted exponential lifetime model. 
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(a) Sample S1 

 

(b) Sample S2 

 

(c) Sample S3 

Figure 5: The density (left) and trace (right) plots for 40,000 MCMC iterations 

of α and θ from HNC data. 
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7 Conclusion 

In this paper, This study examined the estimation of the parameters of the 

generalized inverted exponential distribution under the GHCS-I. Maximum 

likelihood estimates and Bayesian estimates were derived using gamma priors, 

and the Markov Chain Monte Carlo method was applied for Bayesian 

inference.The results indicate that Bayesian estimates, particularly those 

obtained through the Metropolis-Hastings algorithm, outperformed the MLEs 

in terms of root mean square errors, mean relative absolute biases, and interval 

coverage probabilities. Bayesian estimates with higher prior precision 

demonstrated superior performance.Moreover, the LINEX loss function 

estimates provided more robust parameter estimates compared to the squared 

error loss function, especially under different censoring schemes. The analysis 

of a real cancer survival dataset confirmed the applicability and effectiveness 

of the proposed estimation methods. The generalized inverted exponential 

model provided a good fit to the data, as demonstrated by goodness-of-fit tests 

and parameter estimates. This validates the proposed methodology for lifetime 

data analysis under censoring schemes, making it a valuable approach for 

reliability and survival studies.  



255 

References 

Abouammoh, A. M., and Alshingiti, A. M. (2009). Reliability of generalized 

inverted exponential distribution. Journal of Statistical Computation and 

Simulation, 79(11), 1301–1315. 

Ahmad, M. A. (2019). An estimation of the entropy for a fr´echet distribution 

based on generalized hybrid censored samples. Int. J. Sci. Basic Appl. Res, 48, 

226-236. 

Alotaibi, R., Nassar, M., and Elshahhat, A. (2024). A new extended Pham 

distribution for modelling cancer data. Journal of Radiation Research and 

Applied Sciences, 17(3), 100961. 

Chandrasekar, B., Childs, A., and Balakrishnan, N. (2004). Exact Likelihood 

Inference for the Exponential Distribution under Generalized Type-I and Type-II 

Hybrid Censoring. Naval Research Logistics (NRL), 51(7), 994-1004. 

Dhamecha, P. H., and Patel, M. N. (2021). Forthcoming 62F10-21-05-01 

inference for kumaraswamy distribution under Type-I Generalized Hybrid 

Censoring . 

Dey, S., and Dey, T. (2014). Generalized inverted exponential distribution: 

Different methods of estimation. American Journal of Mathematical and 

Management Sciences, 33(3), 194-215. 

Epstein, B. (1954). Truncated life tests in the exponential case. The Annals of 

Mathematical Statistics, 555-564. 

Efron, B. (1988). Logistic regression, survival analysis, and the Kaplan-Meier 

curve. Journal of the American statistical Association, 83(402), 414-425. 

Kotz, S., and Nadarajah, S. (2000). Extreme value distributions: theory and 

applications. world scientific. 

Kundu, D. (2008). Bayesian inference and life testing plan for the Weibull 

distribution in presence of progressive censoring. Technometrics, 50(2), 144-154. 



256 

Liu, K., and Zhang, Y. (2021). The E-Bayesian Estimation for Lomax 

Distribution Based on Generalized Type-I Hybrid Censoring Scheme. 

Mathematical Problems in Engineering, 2021(1), 5570320. 

Mahmoud, R. M., Ahmad, M. A., and Mohammed, B. S. K. (2021). Estimating 

the entropy of a Lomax distribution under generalized type-I hybrid censoring. J. 

Univ. Shanghai Sci. Technol, 23, 470-481. 

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). CODA: convergence 

diagnosis and output analysis for MCMC. R news, 6(1), 7-11. 

Rabie, A., and Li, J. (2019). E-Bayesian estimation for Burr-X distribution based 

on generalized type-I hybrid censoring scheme. American Journal of 

Mathematical and Management Sciences, 39(1), 41-55. 

Zhang, Y., Liu, K., and Gui, W. (2021). Bayesian and e-bayesian estimations of 

bathtub-shaped distribution under generalized type-i hybrid censoring. Entropy, 

23(8), 934. 


