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Abstract 

This paper examines the efficiency and asymmetric multiracial features of 

NFTs (Mana, Tezos), and traditional assets (EGX30, Oil index) using 

Asymmetric Multiracial Cross-Correlations Analysis covering the period 

from January 2020 to May 2021. Considering the full sample with a 

significant variation among asset classes. (Oil-Tezos) and (Mana-Tezos) is 

the most efficient. 
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1. Introduction 
 

Since their inception, the blockchain-based digital asset classes have received 

immense interest from investors and portfolio managers as an alternative 

investment platform. Along with other established traditional 

cryptocurrencies such as Bitcoin, Litecoin, Ripple, and Ethereum, new 

blockchain asset classes such as Decentralized Finance (DeFi) and Non-

Fungible Tokens (NFTs) have made a considerable contribution to the asset 

market’s recent expansion (Aharon & Demir, 2021; Alam, Chowdhury, 

Abdullah, & Masih, 2023; Maouchi, Charfeddine, & el Montasser, 2021; 

Yousaf & Yarovaya, 2022). Fundamentally, NFTs and DeFi differ from 

traditional cryptocurrencies as they are not virtual currency. Where NFTs are 

non-transferable cryptographic digital assets created by Ethereum smart 

contracts and can be sold and traded, the interchangeability of NFTs when 

comparing the other cryptocurrencies is very low (Karim, Lucey, Naeem, & 

Uddin, 2022; Q. Wang, Li, Wang, & Chen, 2021; Y. Wang, 2022). The NFTs 

and DeFi are relatively contemporary and unexplored asset classes, but their 

market capitalization has grown substantially as risk minimizing assets, 

particularly during the COVID-19 period. In the NFT space, the pandemic 

has increased demand for digital art and collectibles as the shift to remote 

work, and online commerce fueled interest in digital assets (Alam et al., 

2023). The interest has driven up prices for some NFTs and has contributed 

to a general increase in the popularity of NFTs. In addition, the return on 

NFTs, which is considered uncorrelated with other assets, such as stocks, 

bonds, and commodities, because they are not tied to any underlying 

financial performance or revenue stream. 

From 2014 through 2022, the NFTs and DeFi market and prices are 

influenced by various factors, including the development of blockchain 
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technology, underlying protocols and products, the level of liquidity in the 

market, and shifts in investor sentiment toward the NFTs and DeFi ecosystem 

(Alam et al., 2023; Ko, Son, Lee, Jang, & Lee, 2022). NFTs gained 

widespread attention in the blockchain space in 2017 with the launch of the 

Ethereum network’s ERC-721 standard (Wilson, Karg, & Ghaderi, 2021). In 

the early days of NFTs, the market was relatively small, with sales typically 

tens of thousands of dollars. However, the market for NFTs has seen 

tremendous growth since 2019, with some sales reaching millions of dollars 

in 2020. The first popular NFTs were CryptoKitties, a collectible game built 

on the Ethereum blockchain, and CryptoPunks, a set of 10,000 unique digital 

characters (Dowling, 2022a; Pinto-Guti´errez, Gait´an, Jaramillo, & 

Velasquez, 2022). 

Furthermore, asymmetric price movement and spike of short-term risk 

spillover were observed during the COVID-19 period among NFTs, DeFi, 

cryptocurrencies, and other assets (Karim et al., 2022), therefore investor had 

to pay attention to the selection of efficient assets in portfolio construction. 

Moreover, the interest in asset allocation based on asset efficiency criteria has 

gained new momentum as the extreme events of the COVID-19 lockdown 

(Abdullah, Wali Ullah, & Chowdhury, 2022), followed by the Russia-

Ukraine war, have triggered severe stress in the global financial markets. 

In the light of the significance of volatility scaling patterns, we aim to 

examine the efficiency and multifractality of NFTs along with other 

traditional assets using Multivariate Generalized Autoregressive Conditional 

Heteroskedasticity (MGARCH). The traditional financial assets include crude 

oil, and EGX30. Our sample period ranges from January 2020 to May 2021, 

covering the starting date of the Covid-19 pandemic crisis (1/1/2020-
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1/6/2021), and the starting date of the Crypto-Bubble crisis (1/1/2021-

1/6/2021). 

Our main findings show a considerable asymmetry in asset efficiency 

variation among the asset classes, where Oil-Tezos is the most efficient while 

the EGX30-Tezos is the least efficient. Before COVID-19, traditional asset 

(S&P 500) was the most efficient asset class, while during the COVID-19 

period, traditional Asset (S&P 500) ranked second in terms of efficiency. 

Considering the entire sample period, NFTs (Tezos) is the most efficient 

asset class. The asymmetric spectrum result suggests NFTs is more sensitive 

to smaller events, large fluctuations dominating bull markets, and small 

fluctuations dominating bear markets.  

The findings of this paper contribute to the two areas of literature focusing on 

the efficiency of financial and digital asset markets. Firstly, the empirical 

estimation of the MGARCH adds to the literature that estimates the 

properties of NFTs and traditional assets. Secondly, the findings of our study 

provide new evidence on possible cross-assets asymmetries in volatility 

movements between pre-and during-COVID-19 periods.  

The rest of the paper is outlined as follows: Section 2 provides a brief 

literature review, Section 3 discusses the methodology and data of this study, 

Section 4 elaborates on the empirical findings, Section 5 concludes the study. 
 

2. Literature review 

The efficient market hypothesis (EMH) is a foundational theory of modern 

finance (Fama, 1970); EMH categorizes market efficiency into three levels 

based on how much accessible information is represented in asset price: 

strong, semi-strong, and weak. Investing in a financial instrument is deemed 

efficient in the weak form if market prices completely represent the available 

information. However, NFTs has unique characteristics as these asset classes 
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are relatively new and still evolving, where returns and volatility are highly 

influenced by asymmetric market sentiment in a limited number of buyers 

and sellers and the success or failure of underlying protocols and products. In 

addition, behavioral biases such as artist popularity, herding, overconfidence, 

and overreaction can further affect the prices of these assets in ways that are 

not reflected in the underlying EMH. 

Recent literature utilized MF-DFA to analyze multifractal noise, market 

volatility, and portfolio selection in general, to improve price predictability 

for portfolio diversification and optimization. Closely related to our paper, 

several recent studies focus on the multifractal features of stock (Chai, Chu, 

Zhang, Abedin, & Lucey, 2022; Mensi, Lee, Vinh Vo, & Yoon, 2021; 

Tiwari, Aye, & Gupta, 2019), commodities (Guo et al., 2021; Mensi, Vo, & 

Kang, 2022), foreign exchange (Diniz-Maganini, Rasheed, & Sheng, 2021) 

and cryptocurrencies (Bariviera, 2021; Cao & Xie, 2021; Chowdhury, 

Abdullah, & Masih, 2022; Kakinaka & Umeno, 2022). Concerning the 

efficiency property of assets, Mensi et al. (2021) analyze the efficiency of top 

crude oil-producing countries and consumer countries’ stock markets. Their 

findings suggest a strong multifractality in a bull market and a decline in 

efficiency during the global financial crisis COVID-19. 

In the review of the recent empirical literature, we look at studies that 

examine gold as an alternative and safe-haven investment, crude oil as an 

important commodity or asset, volatility derivatives as a hedging tool, and 

the flights-to-safety phenomenon (associated with sovereign bonds) as a 

means of risk-rebalancing which once again has attracted the attention of 

both researchers and policymakers. However, given our objective to 

investigate alternative assets’ role, we pay particular attention to studies that 

deal with hedging and diversification strategies. In this context, several 
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scholars such as Tang and Xiong (2012), Silvennoinen and Thorp (2013) and 

Basher and &Sadorsky (2016) argue that the financialisation of 

commodities5 markets offers the investors with various approaches to hedge 

and diversity their portfolios. 

On this aspect, Sadorsky (2012) explored the hedging benefits of oil for the 

European stocks, Raza et al. (2018) investigated the hedging effectiveness of 

commodities futures for the US real estate stock portfolios, Chang et al. 

(2010) analyzed hedge abilities of gasoline and oil spot prices against their 

own future prices in bear and bull markets and Bessler and Wolff (2015) 

examined the performance of commodities in various assets portfolios. These 

findings are supported by the correlation between stock prices and natural gas 

(Kumar et al., 2019). 

Narayan and Sharma (2011) reported that oil prices affect U.S firms’ returns, 

and this effect is regime-dependent. By studying the returns and volatility 

determinants, in their later study, Narayan and Sharma (2014) argued that oil 

prices are a significant predictor of returns and volatility of stock markets and 

that the information on commodity futures is helpful to devise trading 

strategies to gain maximum returns from investment. Similarly, Mensi et al. 

(2015) reported that commodities’ investments are profitable based on 

trading strategies and that profits are dependent on structural-breaks.  

This paper is also associated with another stream of literature on NFTs, and 

that literature is still growing. Several studies have been conducted after this 

topic received attention during COVID-19. Dowling (2022a) examined the 

Decentraland pricing and argues that because of its initial stage of growth, 

the NFTs market is still inefficient. Karim et al. (2022) investigated the 

extreme risk transmission of blockchain markets using quantile 

connectedness methodology and discovered that, among other blockchain 
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markets, NFTs provide greater diversification avenues with significant risk-

bearing potential to protect investments and minimize extreme risks. Yousaf 

and Yarovaya (2022) examined the static and dynamic return and volatility 

spillovers between DeFi, NFTs, and traditional assets and found some DeFi 

and NFTs are net transmitters of volatility and return spillovers and 

connectedness became higher during COVID-19.  Another study by Maouchi 

et al. (2021) discussed digital bubbles in the context of the COVID-19 

pandemic, showing specific DeFi and NFT bubbles in summer 2020, with 

bubbles occurring less frequently before the pandemic period. During the 

COVID-19 outbreak. 

3. Methodology 

We used three linear and non-linear GARCH-class models to describe and 

forecast the volatility of the EGX-30 and Nikkei-225 daily indices return 

(Abdelhafez, 2018). 

3.1 Symmetric GARCH Models 
 

3.1.1 The GARCH Model 

Linear models are unable to explain characteristics like volatility clustering, 

leverage effects, leptokurtosis and long memory in financial series (Zivot, 

2009). Thus, we employ an econometric method that allows modeling 

nonlinear patterns as non-constant volatility. Autoregressive conditional 

heteroscedasticity (ARCH) and its derivative models are popularly utilized in 

modelling and forecasting asset dynamics. Bollerslev (1986) extended 

Engle’s work (1982) and developed the technique that allows for both 

autoregressive (AR) and moving average (MA) components in the 

heteroskedastic variance. This is the generalized Autoregressive Conditional 

Heteroscedasticity, GARCH      model. Brooks (2008) suggest that 
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GARCH (1, 1) model is sufficient to capture the volatility clustering in 

financial data. In this paper we follow Brooks (2008) suggestion and use 

GARCH (1, 1) with the following equations: 

For a univariate series, let be a mean equation at time  : 
 

               Mean equation                                                                      (1) 
 

where:    is the return of the asset at time t, 

    is conditional mean of     and    is the shock at time  , and:  
 

   √                      .  

Then   
  follows a GARCH       model if:    

 

  
     ∑  

 
    

    
  ∑  

 
         

 
       Variance equation            (2) 

where:   
  is conditional variance of   , and            and       

conditions. 

In order to ensure the stationarity of this model, it must meet the following 

requirement: the sum of all parameters must be less than one: 

∑  
         
              .  

The ARCH (q) model is a special case of the GARCH model      when   =0 

           are the coefficient of the parameters ARCH and GARCH, 

respectively, and     
  represents volatility from the previous period, 

while     
 represent conditional variance from previous period. 

 

3.2 Asymmetric GARCH Models 
  

Symmetric GARCH models are unable to capture the asymmetry or leverage 

effects, because  the conditional variances     is a function of past values of 

  
  and the square function   

  is symmetric in   . The symmetric GARCH 

models cannot express the asymmetric effects of negative and positive values 

for    that can have great impact on market returns (Black 1976). To find out 

the direction of the volatility or the leverage effect, a variety of asymmetric 
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GARCH models have been developed such as: GJR-GARCH model and 

EGARCH model (Dury and Xiao, 2018). 
 

3.2.1 The GJR-GARCH Model 

Another model that accounts for asymmetry is GJR-GARCH model proposed 

by Glosten et al., 1993. The model is a simple extension of standard 

GARCH, which allows the conditional variance to have a different response 

to past positive and negative shocks. The model’s conditional variance can be 

written as: 

               Mean equation                                                                            (3) 
 

   √                      . 
 

  
     ∑  

 
    

    
  ∑  

 
         

  ∑        
      

 
   Variance equation   (4) 

 

Where   is the asymmetric response parameter or leverage parameter 

and      is defined as: 

      {
                      
                     

   

The coefficients at the equation (8) 𝛾 > 0 and 𝛾 ≠ 0 show leverage effect and 

asymmetric shocks respectively. The condition for non-negativity is    

        and       and     𝛾    . 

3.2.2 Multivariate GARCH (MGARCH) Model 

MGARCH stands for multivariate GARCH. MGARCH allows the 

conditional-on-past-history covariance matrix of the dependent variables to 

follow a flexible dynamic structure (Pilbeam and Langeland, 2015). 

4 Data and Empirical Results 

4.1 Data 

This paper examines the efficiency and asymmetric multiracial features of 

(EGX30, Oil index), and NFTs (Mana, Tezos), and using Asymmetric 
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Multiracial Cross-Correlations Analysis covering the period from January 

2020 to May 2021.  

4.1.1 Descriptive Statistics for Traditional Assets 

The data are contained in the Excel file. First, we import the dataset into Stata 

and tsset Date. Next, to reduce change range and heteroscedasticity, we 

construct a set of continuously compounded percentage returns called 

`rEGX30', and `rOil' using the following set of commands, respectively: 

generate rEGX30=100*(ln(EGX30/L.EGX30)) 

generate rOil=100*(ln(Oil/L.Oil)) 

Figure 1 and figure 2 show the empirical distribution of returns, we use a 

histogram to illustrate the density of returns. From Figure 1 and figure 2 we 

see that distribution of returns remarkably differs from normality given the 

excess kurtosis and light left skewness implying some asymmetry. 

Figure 1: The Distribution of Daily Stock Returns for EGX30 from (January 2020 to 

May 2021) 
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Figure 1: The Distribution of Daily Returns for Oil index from (January 2020 to May 

2021) 

 

Table 1 and Table 2 present descriptive statistics for the return of EGX30 and 

Oil. Throughout the sample period, the return of EGX30 and Oil exhibit all 

positive values during the sample period, from which lower mean value of -

0.06 is found for Egypt, compared to higher mean value of 0.4 is found for 

Oil. 

As shown in Table 1 and Table 2, statistics for skewness and kurtosis, all 

confirm that price distributions for the return of EGX30 and Oil are not 

normally distributed. The distribution of returns remarkably differs from 

normality given the excess kurtosis and light left skewness implying some 

asymmetry. Heavy tailed leptokurtic distribution implies the index has higher 

risk and return in the sample space. Leptokurtic distributions can also show a 

higher value at risk in the left tail due to the larger amount of value under the 

curve in the worst-case scenarios. Overall, a greater probability for negative 

returns farther from the mean on the left side of the distribution leads to a 

higher value at risk. 
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Besides these, financial assets returns are observed to often have thicker tails 

than expected under normality. Some studies propose that these tails might be 

so thick as to have come from a Cauchy distribution, or other distributions 

with infinite moments (Mandelbrot, 1963). Values of the standard deviations 

obtained for Oil is the highest, i.e., 4.9, implying that this market is the most 

volatile market compared with Egypt stock market. 

Table 1: Descriptive Statistics of the Stock Returns for EGX30 

  Percentiles Smallest     

1% -4.952085 -8.005665     

5% -1.868866 -7.362751     

10% -1.354658 -4.952085 Obs 266 

25% -.7461069 -4.600555 Sum of Wgt. 266 

50% .054012   Mean -.0652482 

    Largest Std.Dev. 1.353399 

75% .6168773 3.006141     

90% 1.183063 3.210531 Variance 1.831688 

95% 1.848107 4.088056 Skewness -1.271286 

99% 3.210531 4.987894 Kurtosis 11.09465 
 

Table 2: Descriptive Statistics of the Returns for Oil 

 

Percentiles Smallest 

  1% -10.82901 -27.99201 

  5% -5.845281 -11.7238 

  10% -3.451685 -10.82901 Obs 280 

25% -1.151304 -10.6087 

Sum of 

Wgt. 280 

50% .2527793  Mean .412311 

  

 Std.Dev. 4.911352 

75% 1.809761 21.35741 

  90% 3.464247 22.04812 Variance 24.12137 

95% 5.354204 22.394 Skewness 1.470551 

99% 22.04812 31.96337 Kurtosis 17.18479 
 

4.1.2 Descriptive Statistics for NFTs 

The data are contained in the Excel file. First, we import the dataset into Stata 

and tsset Date. Next, to reduce change range and heteroscedasticity, we 
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construct a set of continuously compounded percentage returns called 

`rMana', and `rTezos' using the following set of commands, respectively: 

generate rMANA=100*(ln(MANA/L.MANA)) 

generate rTEZOS=100*(ln(TEZOS/L.TEZOS)) 

Figure 3 and figure 4 show the empirical distribution of returns, we use a histogram 

to illustrate the density of returns. From Figure 3 and figure 4 we see that 

distribution of returns remarkably differs from normality given the excess kurtosis 

and light left skewness implying some asymmetry. 

Figure 3: The Distribution of Daily Stock Returns for Mana from (January 2020 to 

May 2021) 

 

Figure 4: The Distribution of Daily Stock Returns for Tezos from (January 2020 to 

May 2021) 
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Table 3 and Table 4 present descriptive statistics for the return of Mana and 

Tezos. Throughout the sample period, the return of Mana and Tezos exhibit 

all positive values during the sample period, from which higher mean value 

of.8 is found for Mana, compared to lower mean value of .32 is found for 

Tezos. 

As shown in Table 3 and Table 4, statistics for skewness and kurtosis, all 

confirm that price distributions for the return of Mana and Tezos are not 

normally distributed. The distribution of returns remarkably differs from 

normality given the excess kurtosis and light left skewness implying some 

asymmetry. Heavy tailed leptokurtic distribution implies the index has higher 

risk and return in the sample space. Leptokurtic distributions can also show a 

higher value at risk in the left tail due to the larger amount of value under the 

curve in the worst-case scenarios. Overall, a greater probability for negative 

returns farther from the mean on the left side of the distribution leads to a 

higher value at risk. 

Besides these, financial assets returns are observed to often have thicker tails 

than expected under normality. Some studies propose that these tails might be 

so thick as to have come from a Cauchy distribution, or other distributions 

with infinite moments (Mandelbrot, 1963). Values of the standard deviations 

obtained for Mana is the highest, i.e., 8.6, implying that this market is the 

most volatile market compared with Tezos. 

Table 3: Descriptive Statistics of the Returns for Mana 

  Percentiles Smallest     

1% -17.30622 -67.05473     

5% -11.85265 -37.86285     

10% -7.223165 -20.34385 Obs 352 

25% -2.87823 -17.30622 Sum of Wgt. 352 

50% .5203059   Mean .8586154 

    Largest Std.Dev.   8.66507 

75% 4.777193 25.50319     

90% 9.720672 26.39655 Variance 75.08344 

95% 15.14259 29.94766 Skewness -1.033898 

99% 25.50319 33.75539 Kurtosis 15.06297 
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Table 4: Descriptive Statistics of the Returns for Tezos 

  Percentiles Smallest     

1% -19.22706   -62.31122     

5% -11.58982 -46.76905     

10% -6.514585 -20.98329 Obs 308 

25% -3.118873 -19.22706 Sum of Wgt. 308 

50% .4596619   Mean .3264657 

    Largest Std.Dev.  8.001775 

75% 3.933252 17.5597     

90% 8.685456 19.51268 Variance 64.02841 

95% 12.9148 19.82927 Skewness -2.093356 

99% 17.5597 27.15237 Kurtosis 18.41052 
 

4.2 Models Tests 

4.2.1 Testing for Serial Correlation for Traditional Assets 

Durbin-Watson Test is one of the tests that reveal the existence of a serial 

correlation of the first degree (for one period).  Durbin–Watson d statistic 

(Durbin and Watson 1950) tests for first-order serial correlation in the 

disturbance when all the regressors are strictly exogenous (Brooks, 2008). If 

we are not willing to assume that all the regressors is strictly exogenous, we 

could instead use Durbin’s alternative test or the Breusch–Godfrey to test for 

first-order serial correlation. Following this procedure, we first regress return 

series (regress rEGX30, regress rOil) on its mean and obtain residuals. We 

then test the null hypothesis that there is no first-order serial correlation. 

Therefore, for reEGX30, and rOil table3, and table 4 respectively indicates 

that the test strongly accepts the null of no first-order serial correlation. 

Table 5: Durbin's Alternative Test for Autocorrelation for Stock Returns for EGX30 

lags(p) chi2 Df Prob>chi2 

        

1 0.630 1 0.4273 

H0: no serial correlation 
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Table 6: Durbin's Alternative Test for Autocorrelation for Returns for Oil 

lags(p) chi2 Df Prob>chi2 

        

1 1.873 1 0.1711 

H0: no serial correlation 

4.2.2 Testing for Serial Correlation for NFTs 

Durbin-Watson Test is one of the tests that reveal the existence of a serial 

correlation of the first degree (for one period).  Durbin–Watson d statistic 

(Durbin and Watson 1950) tests for first-order serial correlation in the 

disturbance when all the regressors are strictly exogenous (Brooks, 2008). If 

we are not willing to assume that all the regressors is strictly exogenous, we 

could instead use Durbin’s alternative test or the Breusch–Godfrey to test for 

first-order serial correlation. Following this procedure, we first regress return 

series (regress rMana, regress rTezos) on its mean and obtain residuals. We 

then test the null hypothesis that there is no first-order serial correlation. The 

test strongly rejects the null of no first-order serial correlation, so we decide 

to refit the model with three lags of rMana, and rTezos included as regressors 

and then rerun estat durbinalt. 

The output from estat durbinalt indicates that including the three lags of 

rMana, and rTezos has removed any serial correlation from the errors as 

shown in Table 7, and Table 8 and the test strongly accepts the null of no 

first-order serial correlation.   

Table 7: Durbin's Alternative Test for Autocorrelation for Returns for Mana 

lags(p) chi2 Df Prob>chi2 

        

1 1.019 1 0.3128 

2 1.019 1 0.3128 

3 1.019 1 0.3128 

H0: no serial correlation 
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Table 8: Durbin's Alternative Test for Autocorrelation for Returns for Tezos 

lags(p) chi2 Df Prob>chi2 

        

1  .967 1 0.3253 

2  .967 1 0.3253 

3  .967 1 0.3253 

H0: no serial correlation 

4.2.3 Testing for Autoregressive Conditional Heteroskedasticity for 

Traditional Assets 

Engle (1982) suggests a Lagrange Multiplier Test (LM) for checking for 

autoregressive conditional heteroskedasticity (ARCH) in the errors. 

Following this procedure, we first regress return series (regress rEGX30, 

regress rOil) on its mean and obtain residuals. We then test the null 

hypothesis that there are no ARCH effects in the residuals. The results of this 

ARCH-LM test for EGX30 series and Oil series are reported in Table 9 and 

Table 10, respectively. Additionally, the volatility clustering pattern observed 

on return series graph depicted on Figure 1 and Figure 2 above suggests 

ARCH type model, as well.  

Table 9 shows the results for tests of ARCH(1), ARCH(2), and ARCH(3) 

effects for EGX30 series, respectively. At the 1% significance level, all three 

tests reject the null hypothesis that the errors are not autoregressive 

conditional heteroskedastic. Table 10 shows the results for tests of ARCH(1), 

ARCH(2), and ARCH(3) effects for Oil series, respectively. At the 1% 

significance level, all three tests reject the null hypothesis that the errors are 

not autoregressive conditional heteroskedastic. 
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Table 9: LM Test for Autoregressive Conditional Heteroskedasticity (ARCH) for 

Stock Returns for EGX30 

lags(p) chi2 Df Prob>chi2 

        

1 20.725 1 0.0000 

2 62.000 2 0.0000 

3 50.389 3 0.0000 

H0: no ARCH effects  vs.  H1: ARCH(p) disturbance 

Table 10: LM Test for Autoregressive Conditional Heteroskedasticity (ARCH) for 

Returns for Oil 

lags(p) chi2 Df Prob>chi2 

        

1 43.453 1 0.0000 

2 55.791 2 0.0000 

3 28.170 3 0.0000 

H0: no ARCH effects vs.  H1: ARCH(p) disturbance 

Therefore, these results reject H0 and show that the series has ARCH effect 

on the residuals, implying that variance of returns of EGX30 series and Oil 

series are non-constant.  

4.2.4 Testing for Autoregressive Conditional Heteroskedasticity for NFTs 

Engle (1982) suggests a Lagrange Multiplier Test (LM) for checking for 

autoregressive conditional heteroskedasticity (ARCH) in the errors. 

Following this procedure, we first regress return series (regress rMana, 

regress rTezo) on its mean and obtain residuals. We then test the null 

hypothesis that there are no ARCH effects in the residuals. The results of this 

ARCH-LM test for Mana series and Tezos series are reported in Table 11and 

Table 12, respectively. Additionally, the volatility clustering pattern observed 

on return series graph depicted on Figure 1 and Figure 2 above suggests 

ARCH type model, as well.  
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Table 11 shows the results for tests of ARCH(1) effect for Mana series. At 

the 1% significance level, the test rejects the null hypothesis that the error is 

not autoregressive conditional heteroskedastic. Table 12 shows the results for 

tests of ARCH(1) effect for Tezos series. At the 1% significance level, the 

test rejects the null hypothesis that the error is not autoregressive conditional 

heteroskedastic. 

Table 11: LM Test for Autoregressive Conditional Heteroskedasticity (ARCH) for 

Returns for Mana 

lags(p) chi2 Df Prob>chi2 

        

1 4.490 1 0.0341 
 

H0: no ARCH effects  vs.  H1: ARCH(p) disturbance 

Table 12: LM Test for Autoregressive Conditional Heteroskedasticity (ARCH) for 

Returns for Tezos 

lags(p) chi2 Df Prob>chi2 

        

1 5.146 1 0.0233 

H0: no ARCH effects  vs.  H1: ARCH(p) disturbance 

Therefore, these results reject H0 and show that the series has ARCH effect 

on the residuals, implying that variance of returns of Mana series and Tezos 

series are non-constant.  

4.3 Empirical Results 

Since the residuals have ARCH effects we employ GARCH process to model 

this conditional heteroscedasticity. Considering that the data is not normally 

distributed we estimate GARCH parameters and obtain ARMA(1,1) mean 

equation.  
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4.3.1 Parameter Estimation of Symmetric GARCH Models 

1. The GARCH (1, 1) Model 

The reported    (ARCH term) measures the extent to which a volatility 

shock today feeds through into next period’s volatility (Campbell et al. 

1997). For our series, EGX30, this coefficient is 0.699096 and this shows the 

presence of volatility clustering in the series over the period. The volatility 

changes over time and its degree shows a tendency to persist, i.e., there are 

periods of low volatility and periods where volatility is high. The estimate of 

   (GARCH term) coefficient is 0.2738783 indicates a long memory in the 

variance. This means that changes in the current volatility will affect future 

volatilities for a long period or the impact of old news on volatility is long 

lasting. The sum of ARCH and GARCH terms       is 0.9729743 

indicating volatility shocks are quite persistent. The financial implication of 

these coefficients for investors is that EGX30 index returns’ volatility 

exhibits clustering, and this permits investors to establish future positions in 

expectation of this characteristic. The same is for our series, Oil, the estimate 

of    coefficient is 0.534525 and this shows the presence of volatility 

clustering in the series over the period. The volatility changes over time and 

its degree shows a tendency to persist, i.e., there are periods of low volatility 

and periods where volatility is high. The estimate of β1 (GARCH term) 

coefficient is 0.599726 indicates a long memory in the variance. The sum of 

ARCH and GARCH terms      is 1.1314251 indicate that the random 

error series is non-stationary, and this is the main difference between the 

estimation results of EGX30 and Oil indices. Estimation results are reported 

on Table 13 and Table 14. 
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It is clear that the parameters of the model are significant, but the estimated 

parameter β1 (GARCH term) has a positive sign but is statistically not 

significant for stock returns for EGX30. The individual conditional variance 

coefficients are also as one would expect. The variance intercept term cons in 

the `ARCH'-parameter `L1.arch' is around 0.69, 0.53 while the coefficient 

on the lagged conditional variance `L1.garch' is around 0. 27, 0.59 for 

EGX30 and Oil indices. 

Table 13: Estimation Results of GARCH Model for Stock Returns for 

EGX30 

Number of obs   =       

280 

Distribution: Gaussian 

Log likelihood = -

430.6426 

 

------------------------------------------------------------------------------ 

   

 

| 

      

 

rEGX30 Coef. Std.Err. z P>|z| [95% Conf.Interval] 

-------------+---------------------------------------------------------------- 

   rEGX30 | 

      

 

_cons 0.014297 0.068536 0.21 0.835 -0.12003 0.148625 

-------------+---------------------------------------------------------------- 

   ARCH | 

      

 

Arch 

      

 

L1. 0.699096 0.096525 7.24 0.000 0.509912 0.888281 

 

| 

      

 

Garch 

      

 

L1. 0.273878 0.169104 1.62 0.105 -0.05756 0.605317 

 

| 

      

 

_cons 0.262747 0.246842 1.06 0.287 -0.22105 0.746548 

------------------------------------------------------------------------------ 
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Table 14: Estimation Results of GARCH Model for Returns for Oil 

Number of obs   =       

280 

Distribution: Gaussian 

Log likelihood = -

796.6187 

 

 

| 

      

 

rOil Coef. Std.Err. z P>|z| [95% Conf.Interval] 

-------------+---------------------------------------------------------------- 

 rOil | 

      

 

_cons 0.301804 0.226705 1.33 0.183 -0.14253 0.746138 

-------------+---------------------------------------------------------------- 

 ARCH | 

      

 

arch 

      

 

L1. 0.534525 0.059892 8.92 0.000 0.417139 0.65191 

 

| 

      

 

garch 

      

 

L1. 0.599726 0.085054 7.05 0.000 0.433023 0.766429 

 

| 

      

 

_cons -0.62227 1.588294 -0.39 0.695 -3.73527 2.490726 

 

4.3.2Parameter Estimation of Asymmetric GARCH Models 

1. The GJR-GARCH (1, 1) Model 

The GJR model is a simple extension of the GARCH model with an 

additional term added to account for possible asymmetries. It should be noted 

that the GARCH model is a special case of the GJR model. If we put       

in the GJR model, which means no asymmetric effects exist, we obtain the 

GARCH model. It is clear that the parameters of the model are significant for 

EGX 30 and Oil indices, and this indicates that the model is appropriate. But 

the estimated parameter β1 (GARCH term) has a positive sign but is 
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statistically not significant for stock returns for EGX30, and a negative sign 

but is statistically not significant for stock returns for Oil .  

We find a negative coefficient estimate on the ―L1.tarch” term (leverage 

asymmetric effect) for Oil index, which is not what we would expect to find 

according to the leverage expect explanation if we were modelling return 

volatilities. This is significant and this means that the volatility is asymmetry. 

The negative L1.tarch coefficient implies that negative effects (such as 

information on price declines) lead in the coming period to greater 

conditional variance than positive effects, leading to further price declines. 

This indicates that the existence of leverage effect is observed in returns of 

the Oil index. Estimation results are reported on Table 15 and Table 16. 

Table 15: Estimation Results of GJR-GARCH Model for Stock Returns for EGX30 

Number of obs   =      266 

Distribution: Gaussian                                                

Log likelihood = -428.5548 

 

rEGX30 Coef. Std.Err. z P>|z| [95% Conf.Interval] 

-------------+---------------------------------------------------------------- 

  rEGX30 | 

      

 

_cons 0.03976 0.072418 0.55 0.583 -0.10218 0.181697 

-------------+---------------------------------------------------------------- 

  ARCH | 

      

 

arch 

      

 

L1. 0.371026 0.174344 2.13 0.033 0.029319 0.712734 

 

| 

      

 

tarch 

      

 

L1. 0.478131 0.167368 2.86 0.004 0.150096 0.806166 

 

| 

      

 

garch 

      

 

L1. 0.249903 0.145683 1.72 0.086 -0.03563 0.535435 

 

| 

      

 

_cons 0.314404 0.221145 1.42 0.155 -0.11903 0.74784 
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Table 16: Estimation Results of GJR-GARCH Model for Stock Returns for Oil 

Number of obs   =      280 

Distribution: Gaussian                                                

Log likelihood = -786.6443 

 

rOil Coef. Std.Err. z P>|z| [95% Conf.Interval] 

-------------+---------------------------------------------------------------- 

 rOil | 

      

 

_cons 0.312269 0.132104 2.36 0.018 0.053349 0.571188 

-------------+---------------------------------------------------------------- 

 ARCH | 

      

 

arch 

      

 

L1. 2.385637 0.52686 4.53 0.000 1.353011 3.418262 

 

| 

      

 

tarch 

      

 

L1. -1.68461 0.515891 -3.27 0.001 -2.69574 -0.67348 

 

| 

      

 

garch 

      

 

L1. -0.04336 0.02882 -1.5 0.132 -0.09985 0.013127 

 

| 

      

 

_cons 7.768165 0.783714 9.91 0 6.232114 9.304215 

 

4.3.3 Parameter Estimation of Multivariate GARCH Models 

Multivariate GARCH models are in spirit very similar to their univariate 

counterparts, except that the former also specify equations for how the 

covariances move over time and are therefore by their nature inherently more 

complex to specify and estimate. For each dependent variable, we first find 

the estimates for the conditional mean equation, followed by the conditional 

variance estimates in a separate panel. It is evident that the parameter 

estimates are all both plausible and statistically significant. In the final panels 

Stata reports results for the conditional correlation parameters. For example, 

the conditional correlation between the standardized residuals for corr (rOil, 

rTEZOS) estimated to be 0.1590806 and statistically significant, and the 
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conditional correlation between the standardized residuals for corr (rTEZOS, 

rMANA) estimated to be 0.6580539 and statistically significant. 

Table 17: Estimation Results of Multivariate GARCH Models for EGX30, Oil, 

Mana, and Tezos 

Number of obs   =      173 

Distribution: Gaussian                                                

Log likelihood = -1895.276 

 

| Coef. Std.Err. z P>|z| [95% Conf.Interval] 

--------------------+---------------------------------------------------------------- 

  rOil | 

      

 

_cons 0.920888 0.253029 3.64 0.000 0.424959 1.416816 

--------------------+---------------------------------------------------------------- 

  ARCH_rOil | 

      

 

arch 

      

 

L1. 0.947792 0.220355 4.3 0.000 0.515905 1.37968 

 

| 

      

 

garch 

      

 

L1. -0.05735 0.017584 -3.26 0.001 -0.09181 -0.02289 

 

| 

      

 

_cons 11.87615 2.296705 5.17 0.000 7.374694 16.37761 

--------------------+---------------------------------------------------------------- 

  rEGX30 | 

      

 

_cons 0.079527 0.07622 1.04 0.297 -0.06986 0.228916 

--------------------+---------------------------------------------------------------- 

  ARCH_rEGX30 | 

      

 

arch 

      

 

L1. 0.460495 0.208682 2.21 0.027 0.051486 0.869504 

 

| 

      

 

garch 

      

 

L1. 0.288709 0.66803 0.43 0.666 -1.02061 1.598023 

 

| 

      

 

_cons 0.307589 0.760024 0.4 0.686 -1.18203 1.797209 

--------------------+---------------------------------------------------------------- 

  rTEZOS | 

      

 

_cons -0.54714 0.468867 -1.17 0.243 -1.4661 0.371824 

--------------------+---------------------------------------------------------------- 

  ARCH_rTEZOS | 

      

 

arch 

      

 

L1. 0.32652 0.108809 3 0.003 0.113259 0.539781 
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| 

      

 

garch 

      

 

L1. 0.08962 0.36384 0.25 0.805 -0.62349 0.802732 

 

| 

      

 

_cons 28.63437 15.98638 1.79 0.073 -2.69836 59.9671 

--------------------+---------------------------------------------------------------- 

  rMANA | 

      

 

_cons 0.118351 0.572891 0.21 0.836 -1.0045 1.241197 

--------------------+---------------------------------------------------------------- 

  ARCH_rMANA | 

      

 

arch 

      

 

L1. 0.220212 0.114073 1.93 0.054 -0.00337 0.443791 

 

| 

      

 

garch 

      

 

L1. 0.649579 1.250351 0.52 0.603 -1.80106 3.100222 

 

| 

      

 

_cons 10.382 74.27754 0.14 0.889 -135.199 155.9633 

--------------------+---------------------------------------------------------------- 

  

 

corr(rOil,rEGX30)| 0.119407 0.076273 1.57 0.117 -0.03008 0.268899 

 

corr(rOil,rTEZOS)| 0.159081 0.075401 2.11 0.035 0.011297 0.306864 

 

corr(rOil,rMANA)| 0.137407 0.076062 1.81 0.071 -0.01167 0.286486 

 

corr(rEGX30,rTEZOS)| 0.017624 0.077009 0.23 0.819 -0.13331 0.168558 

 

corr(rEGX30,rMANA)| 0.053387 0.076922 0.69 0.488 -0.09738 0.204151 

 

corr(rTEZOS,rMANA)| 0.658054 0.044032 14.94 0.000 0.571752 0.744355 
 

4.3.4 Choosing the Best Fitting Model 

To evaluate the performance of the GARCH models used to analyze the 

EGX30 and Oil indices data, we use the following selection criteria: 

 

1. Akaike Information Criterion (AIC). 

2. Bayesian information criterion (BIC).  
 

Table 18: Results of Different GARCH Models Tests for EGX30 

Model AIC BIC 

GARCH  869.2852 883.6192 

GJR-GARCH 867.1097 885.0271 

Multivariate GARCH 1787.288 1816.928 
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Table 19: Results of Different GARCH Models Tests for Oil 

Model AIC BIC 

GARCH  1601.237 1615.776 

GJR-GARCH 1583.289 1601.463 

Multivariate GARCH 1787.288 1816.928 

 

From Table (18, 19) above, it is clear that the GJR-GARCH model has the lowest 

AIC and BIC values (867.1097, 885.0271, 1583.289, 1601.463) for EGX30 and 

Oil indices respectively. Thus, we can conclude that GJR-GARCH model is the 

best model for the EGX30 and Oil indices. 
 

5. Conclusion 
 

This paper uses standard GARCH, asymmetric GJR-GARCH models to 

analyze volatility in Traditional Assets (EGX30, Oil), and NFTs (Mana, and 

Tezos) returns for the period of January 2020 to May 2021. Our purpose was 

to evaluate the forecasting performance of linear and non-linear (GARCH)-

class models, these models are capable of capturing symmetric and 

asymmetric dynamics such as leptokurtosis, volatility clustering, and 

leverage effects of the return series. 

The results show that EGX30 and Oil indices returns deviate from normality 

and exhibit volatility clustering with varying variance in the residuals, and 

this permits investors to establish future positions in expectation of this 

characteristic. These findings show nonlinear structure in the conditional 

variance of the returns and this dynamic may be simulated with the GARCH 

(1, 1) model. Estimates of the model       ) for EGX30 show the variance 

of the series has long memory and shocks on volatility are quite persistent, 

and this support the mean reverting process. The sum of ARCH and GARCH 

terms for Oil indicate that the random error series is non-stationary 
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The findings of GJR-GARCH model show that the series have leverage 

effect, and the impact of the shocks is asymmetric, and that means the impact 

of negative shocks on volatility are higher than positive shocks of the same 

size for both EGX30 and Oil indices. This finding is consistent with the 

literature. Multivariate GARCH model indicates a significant positive 

relationship between rOil, and rTEZOS. Additionally, Multivariate GARCH 

model indicates a significant positive relationship between rTEZOS, and 

rMANA. 

We compared the forecasting performance of several GARCH models in 

regard to in and out-of-sample forecast ability. The GARCH models were 

evaluated based on their ability to forecast future returns. According to the 

results obtained by the two selection criteria —AIC, and BIC—we concluded 

that the most appropriate models for modeling the volatility of EGX30 and 

Oil imdices for the full sample is GJR-GARCH model. Furthermore, the 

results of this study support those of previous studies (Abdalla and Winker, 

2012; Abdelhafez, 2018), in which it is concluded that compared with linear 

GARCH-class models, non-linear GARCH-class models are a better fit for 

measuring the volatility of stock market returns (e.g., Gabriel and 

Ugochukwu, 2012; Al Rahahleh and Bhatti, 2017). Therefore, our results are 

of benefit to policy-makers in predicting the efficiency and asymmetric 

multiracial features of NFTs (Mana, Tezos), and traditional assets (EGX30, 

Oil index) using Asymmetric Multiracial Cross-Correlations Analysis. 
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 ملخص:

الواليت التقليديت هرا البحث يقوم بدزاست كفاءة و خصائص الأصول الواليت غيس التقليديت و الأصول 

هع الأخر في الاعتباز  0202الى هايو 0202في الفتسة هن ينايس  MGARCHباستخدام نواذج .

            توليفاث الأصول الواليت التقليديتوتن التوصل الى الاختلافاث الجوهسيت بين الأصول الواليت. 

النواذج السابقت الركس لقياس التقلباث  مو الأصول الواليت الغيستقليديت الأكثس فعاليت هن خلال استخدا

 .السعسيت

 الكلمات الدالة

 MGARCH، الأصول الواليت التقليديت، وNFTsالتقلباث،         

 

 

 

 

 

 


