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Abstract 

The Type-II progressive censoring schemes of maximum product spacing 

will be discussed. In this paper, we have studied the problem of 

point estimation of the two parameters for the Kumaraswamy distribution 

based on progressive Type-II censoring. The maximum product spacing is 

used to estimate the model's parameters. To evaluate the performance of the 

point estimator, the simulation study is carried out. To illustrate the usefulness 

of the study in practice, a real data is used to study the performance of the 

estimation process under this progressive Type-II censoring scheme. In this 

paper, we have considered the problem of estimation of the unknown 

parameters for Kumaraswamy distribution under progressive Type-II 

censoring. We derived maximum product spacings estimates for the unknown 

parameters of a Kumaraswamy distribution. To illustrate the usefulness of the 

study in practice, a real data is used to study the performance of the estimation 

process under this progressive Type-II censoring scheme. In this paper, 

although we have mainly considered Type-II progressive censoring cases, the 

same method can be extended to other censoring schemes also. 

Keywords 

Kumaraswamy distribution, progressive Type-II censoring, Maximum product 

spacing estimation. 
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1. Introduction 

The Kumaraswamy distribution is similar to the Beta distribution, but it has 

a notable advantage of having an invertible cumulative distribution function 

that can be expressed in a closed-form. Kumaraswamy (1976, 1978) showed 

that commonly used probability distribution functions like the normal, log-

normal, and beta distributions do not adequately model hydrological data such 

as daily rainfall and stream flow. As a result, Kum. introduced a new 

probability density function known as the sine power probability density 

function. 

Kumaraswamy (1980) introduced the Kumaraswamy distribution as a 

versatile probability density function for double-bounded random processes. 

This distribution is suitable for modeling various natural phenomena with 

lower and upper bounds, such as individual heights, test scores, atmospheric 

temperatures, hydrological data, and more. Additionally, the Kumaraswamy 

distribution can be used when scientists need to model data with finite bounds, 

even if they are using probability distributions with infinite bounds in their 

analysis. The Kumaraswamy distribution's probability density function (pdf) is 

described by 

 

𝑓(𝑥) = 𝛼𝛽𝑥𝛼−1(1 − 𝑥𝛼)𝛽−1                                                                     (𝟏) 

 

where 0 < x < 1 and 𝛼, 𝛽 are two positive shape parameters. When 𝛼 = 1 and 

𝛽 = 1, then one can obtain a Uniform distribution 𝑈(0, 1) as special case of 

the Kumaraswamy distribution. The cumulative distribution function (cdf) of 

the Kumaraswamy distribution is given by 
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     𝐹(𝑥) = 1 − (1 − 𝑥𝛼)𝛽 , 0 < 𝑥 < 1                                                   (𝟐) 
 

Figure 1 showed the behavior of pdf and cdf of the Kumaraswamy distribution 

at different values of the parameters α and β 

 

(a) pdf of the Kumaraswamy distribution(b)  cdf of the Kumaraswamy distribution 

Figure 1: Behavior of Kumaraswamy distribution 
 

In industrial life testing and medical survival analysis, it is common for the 

object of interest to be lost or withdrawn before failure, or for the object's 

lifetime to be only known within an interval. This results in a sample that is 

incomplete, often referred to as a censored sample. There are various reasons 

for removal of experimental units, such as saving them for future use, 

reducing total test time, or lowering associated costs. Right censoring is a 

technique used in life-testing experiments to handle censored samples. The 

conventional Type-I and Type-II censoring schemes are the most common 

methods of right censoring, but they do not allow for removal of units at 

points other than the terminal point of the experiment, limiting their 
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flexibility. To address this limitation, a more general censoring scheme called 

the progressive Type-II censoring scheme has been proposed. as follows: 

 Suppose that 𝑛unite are placed on a test at time zero with 𝑚 failures to 

be observed. 

 At the first failure, say 𝑥(1), 𝑅1of the remaining units are randomly 

selected and removed.  

 At the time of the second failure, 𝑥(2), 𝑅2of the remaining units are 

selected and removed. 

 Finally, at the time of the 𝑚𝑡ℎ failure the rest of the units are all 

removed, 𝑅𝑚 = 𝑛 − 𝑅1 − 𝑅2 − ⋯ − 𝑅𝑚−1 − 𝑚.  

 Thus, it is possible to witness the data {(𝑥(1), 𝑅1), … , (𝑥(𝑚), 𝑅𝑚)} 

during a gradual censorship plan. Even though 𝑅1, 𝑅2, … , 𝑅𝑚 are 

encompassed as a section of the data, their values are previously known.  

The joint probability density function of all 𝑚progressive Type-II censoring 

schemestatistics is (Balakrishnan and Aggarwala (2000)) 

  𝐿(𝛼, 𝛽) =  C ∏(𝑓(𝑥(𝑖); 𝛼, 𝛽))(1 − 𝐹(𝑥(𝑖); 𝛼, 𝛽))
𝑅𝑖

𝑚

𝑖=1

                      (𝟑) 

where 

𝐶 = 𝑛(𝑛 − 𝑅1 − 1) … (𝑛 − 𝑅1 − 𝑅2 − ⋯ − 𝑅𝑚 − 𝑚 + 1) 

If𝑅1 = 𝑅2 = ⋯ = 𝑅𝑚−1 = 0, then 𝑅𝑖 = 𝑛 − 𝑚 which corresponds to the 

Type-II censoring. and If 𝑅1 = 𝑅2 = ⋯ = 𝑅𝑚 = 0, then 𝑛 = 𝑚 which 

corresponds to the complete sample (Wu (2002)). 
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Sindhu et al. (2013) studied the Bayesian and non-Bayesian estimation for the 

shape parameter of the Kumaraswamy distribution under Type-II censored 

samples. They obtained maximum likelihood estimation and Bayes estimation 

using asymmetric loss functions: Degroot loss function, LINEX loss function 

and General Entropy loss function. They derived Posterior predictive 

distributions along with posterior predictive intervals under simple and 

mixture priors. Reyad and Ahmed (2016) introduced the Bayesian and E-

Bayesian estimation for the shape parameter of the Kumaraswamy distribution 

based on Type-II censored schemes. They derived estimates under symmetric 

loss function [squared error loss] and three asymmetric loss functions: LINEX 

loss function, Degroot loss function and Quadratic loss function. Ghosh and 

Nadarajah (2017) discussed Bayesian estimation of Kumaraswamy 

distributions based on three different types of censored samples: left 

censoring, singly Type-II censoring and doubly Type-II censoring. They 

obtained Bayes estimates using two different types of loss functions: LINEX 

and Quadratic. Pak and Rastogi (2018) considered non-Bayesian and Bayesian 

estimation of Kumaraswamy parameters when the data are Type-II hybrid 

censored. The maximum likelihood estimates and its asymptotic variance-

covariance matrix are obtained. They used the asymptotic variances and 

covariance’s of the MLEs to construct approximate confidence intervals. In 

addition, by using the parametric bootstrap method, discussed the construction 

of confidence intervals for the unknown parameter. Sultana et al. (2018) 

considered estimation of unknown parameters of a two-parameter 

Kumaraswamy distribution with hybrid censored samples. They obtained 



95 
 

maximum likelihood estimates using an EM algorithm. Bayes estimates were 

derived under the squared error loss function using different approximation 

methods and an importance sampling technique is also discussed. El-Deen et 

al. (2014) studied non-Bayesian and Bayesian approaches to obtain point and 

interval estimation of the shape parameters, the reliability and the hazard rate 

functions of the Kumaraswamy distribution. The estimators are obtained based 

on generalized order statistics. The symmetric and asymmetric loss functions, 

the squared error loss function (as a symmetric loss function), LINEX, 

precautionary and general entropy loss functions (as asymmetric loss 

functions) are considered for Bayesian estimation. Also, maximum likelihood 

and Bayesian prediction for a new observation are found. The results have 

been specialized to Type-II censored data and the upper record values. 

Kohansal and Bakouch (2019) described the point and interval estimation of 

the unknown parameters of Kumaraswamy distribution under the adaptive 

Type-II hybrid progressive censored samples. They obtained the maximum 

likelihood estimation of the parameters. In addition, the Bayesian estimation 

of the parameters is approximated by using the MCMC algorithm and 

Lindley’s method due to the lack of explicit forms. Sultana et al. (2020) 

investigated the estimation problems of unknown parameters of the 

Kumaraswamy distribution under Type-I progressive hybrid censoring. They 

derived the maximum likelihood estimates of parameters using an EM 

algorithm. Bayes estimates were obtained under different loss functions using 

the Lindley method and importance sampling procedure. Tu and Gui (2020) 

discussed and considered the estimation of unknown parameters featured by 
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the Kumaraswamy distribution on the condition of a generalized progressive 

hybrid censoring scheme. They derived the maximum likelihood estimators 

and Bayesian estimators under symmetric loss functions and asymmetric loss 

functions, like general entropy, squared error as well as Linex loss function. 

Since the Bayesian estimates fail to be of explicit computation, Lindley 

approximation, as well as the Tierney and Kadane method, is employed to 

obtain the Bayesian estimates. Ghafouri and Rastogi (2021) considered the 

estimation of the parameters and reliability characteristics of Kumaraswamy 

distribution using progressive first failure censored samples. They derived the 

maximum likelihood estimates using an EM algorithm and compute the 

observed information of the parameters that can be used for constructing 

asymptotic confidence intervals. Also, they computed the Bayes estimates of 

the parameters using Lindley approximation as well as the Metropolis-

Hastings algorithm. Gholizadeh et al. (2011) studied the Bayesian and non-

Bayesian estimators for the shape parameter, reliability and failure rate 

functions of the Kumaraswamy distribution in the cases of progressively 

Type-II censored samples. Maximum likelihood estimation and Bayes 

estimation, reliability and failure rate functions are obtained using symmetric 

and asymmetric loss functions, like squared error loss, Precautionary and 

LINEX loss functions. Feroze and Elbatal (2013) considered the estimation of 

two parameters of the Kumaraswamy distribution under progressive Type-II 

censoring with random removals, where the number of units removed at each 

failure time has a binomial distribution. They obtained the maximum 

likelihood estimation of the unknown parameters, and the asymptotic 
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variance-covariance matrix was also obtained. Also, they derived the formula 

to compute the expected test time. Eldin et al. (2014) studied the Estimation 

for parameters of the Kumaraswamy distribution based on progressive Type-II 

censoring. They derived estimates using the maximum likelihood and 

Bayesian approaches. In the Bayesian approach, the two parameters are 

assumed to be random variables and estimators for the parameters are 

obtained using squared error loss function. Erick et al. (2016) considered the 

parameter estimation problem of test units from Kumaraswamy distribution 

based on progressive Type-II censoring scheme. The maximum likelihood 

Estimates of the parameters are derived using EM algorithm. Also the 

expected Fisher information matrix based on the missing value principle is 

computed. EL-Sagheer (2019) used the maximum likelihood, Bayes, and 

parametric bootstrap methods for estimating the unknown parameters, as well 

as some lifetime parameters reliability and hazard functions, based on 

progressively Type-II right-censored samples from a two-parameter 

Kumaraswamy distribution. The classical Bayes estimates proposed by 

applying the Markov chain Monte Carlo (MCMC) technique. 

 

2. Maximum Product Spacings 

Ng et al. (2012) and El-Sherpienyet al. (2020) introduced maximum 

product spacing (MPS) method based on progressive Type-II censoring 

scheme sample method, MPS method chooses the parameter values that make 

the observed data as uniform as possible, according to a specific quantitative 

measure of uniformity. 
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𝐺(𝛼, 𝛽) = ∏(𝐹(𝑥(𝑖); 𝛼, 𝛽) − 𝐹(𝑥(𝑖−1); 𝛼, 𝛽)) ∏(1 − 𝐹(𝑥(𝑖); 𝛼, 𝛽))
𝑅𝑖

𝑚

𝑖=1

𝑚+1

𝑖=1

 

from (2), one can get: 

𝐺(𝛼, 𝛽) = ∏ {(1 − 𝑥(𝑖−1)
𝛼)

𝛽
− (1 − 𝑥(𝑖)

𝛼)
𝛽

} ∏(1 − 𝑥(𝑖)
𝛼)

𝛽𝑅𝑖

𝑚

𝑖=1

𝑚+1

𝑖=1

 

The natural logarithm of the product spacings function is 

   𝑆(𝛼, 𝛽) = ∑ log {(1 − 𝑥(𝑖−1)
𝛼)

𝛽
− (1 − 𝑥(𝑖)

𝛼)
𝛽

} + ∑ 𝛽𝑅
𝑖
log(1 − 𝑥(𝑖)

𝛼)

𝑚

𝑖=1

𝑚+1

𝑖=1

 

where𝑆(𝛼, 𝛽) = log 𝐺(𝛼, 𝛽). 

The MPS estimators of 𝛼 and 𝛽, denoted by �̂�𝑀𝑃𝑆 and �̂�𝑀𝑃𝑆, respectively, are 

obtained by solving the following normal equations simultaneously 

𝜕𝑆(𝛼, 𝛽)

𝜕𝛼
= ∑ 𝛽𝑅

𝑖

−𝑥(𝑖)
𝛼log(𝑥(𝑖))

(1 − 𝑥(𝑖)
𝛼)

𝑚

𝑖=1

 

 + ∑ [
𝛽(1 − 𝑥(𝑖)

𝛼)𝛽−1𝑥(𝑖)
𝛼 log(𝑥

(𝑖)
) − 𝛽(1 − 𝑥(𝑖−1)

𝛼)𝛽−1𝑥(𝑖−1)
𝛼 log(𝑥

(𝑖−1)
)

(1 − 𝑥(𝑖−1)
𝛼)

𝛽
− (1 − 𝑥(𝑖)

𝛼)
𝛽

]

𝑚+1

𝑖=1

= 0, 

and  

𝜕𝑆(𝛼, 𝛽)

𝜕𝛽
= ∑ 𝑅𝑖log(1 − 𝑥(𝑖)

𝛼)

𝑚

𝑖=1

 

           + ∑ [
(1 − 𝑥(𝑖−1)

𝛼)
𝛽

log(1 − 𝑥(𝑖−1)
𝛼) − (1 − 𝑥(𝑖)

𝛼)
𝛽

log(1 − 𝑥(𝑖)
𝛼)

(1 − 𝑥(𝑖−1)
𝛼)

𝛽
− (1 − 𝑥(𝑖)

𝛼)
𝛽

]

𝑚+1

𝑖=1

= 0 
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The MPS, �̂�𝑀𝑃𝑆and �̂�𝑀𝑃𝑆 are the solution of the two nonlinear equations that 

the system needs to be solved numerically to obtain parameters estimation 

values. 

 

3.Simulation Study 

In this simulation, the average and mean square error using the MPC 

Method for Parameters estimation of Kumaraswamy distribution based on a 

progressive Type-II censoring scheme are now computed using a number of 

replications 1000using R-Statistical Programming Language for Statistical 

Computing, based on the following assumptions: 

1. values of(𝛼, 𝛽) = (0.5, 0.5), (0.5, 1), (1, 2), and (1, 1). 

2. Sample sizes of 𝑛 = 40, 𝑛 = 80 and 𝑛 = 100. 

3.  In this simulation, the algorithm proposed by Balakrishnan and Sandhu 

(1995)can be used to generate a progressively Type-II censored sample, 

removed items 𝑅𝑖 are assumed at different sample sizes 𝑛 and the number 

of stages 𝑚 as shown in Table (1). 

Table (1): Numerous patterns for removing items from life test at different 

number of stages 

𝒏 𝒎 
censoring schemes 

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 

40 
20 (20, 0∗19) (10, 0∗18, 10) (0∗9, 10,10, 0∗9) ( 0∗19, 20) 

30 (10, 0∗29) (5, 0∗28, 5) (0∗14, 5,5, 0∗14) ( 0∗29, 10) 

80 
40 (40, 0∗39) (20, 0∗38, 20) (0∗19, 20,20, 0∗19) ( 0∗39, 40) 

60 (20, 0∗59) (10, 0∗58, 10) (0∗29, 10,10, 0∗29) ( 0∗59, 20) 

100 
60 (40, 0∗59) (20, 0∗58, 20) (0∗29, 20,20, 0∗29) ( 0∗59, 40) 

80 (20, 0∗79) (10, 0∗78, 10) (0∗39, 10,10, 0∗39) ( 0∗79, 20) 
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Here, (2∗3, 0), for example, means that the censoring scheme employed is 

(2,2,2,0). 

Based on the generated data, we compute the MPSs. In tables (2,3), we 

display the estimates obtained by using MPS at different values of 𝑛 and 𝑚, 

respectively. Further, the first column represents the average estimates (Avg.) 

and the second column represents the mean square error (MSE). 

 

From Tables (2,3), we observed that the Avg. and MSE of the estimates are 

close together.  As a general result, we see that when 𝑛 increases, for all cases, 

the MSE decrease. 

Table (2): Average, MSE for MPS of the Kumaraswamy distribution for different 

progressive Type-II censoring scheme at different values of𝜶, 𝜷,𝒏, and 𝒎. 

 (𝒏, 𝒎) Sch. Parm. 

𝜶 = 𝟎. 𝟎𝟓, 𝜷

= 𝟎. 𝟎𝟓 
𝜶 = 𝟎. 𝟎𝟓, 𝜷 = 𝟏 

Avg. MSE Avg. MSE 

(40, 20) 

𝑆1 
𝛼 

𝛽 

0.6925 

0.6665 

0.0919 

0.0812 

0.6467 

1.4239 

0.0524 

0.5218 

𝑆2 
𝛼 

𝛽 

0.6379 

0.6164 

0.0621 

0.0746 

0.6057 

1.3238 

0.0390 

0.5548 

𝑆3 
𝛼 

𝛽 

0.6697 

0.7133 

0.0693 

0.1368 

0.6355 

1.5564 

0.0438 

0.9635 

𝑆4 
𝛼 

𝛽 

0.6335 

0.6382 

0.0602 

0.1082 

0.6063 

1.4027 

0.0405 

0.9064 

(40, 30) 

𝑆1 
𝛼 

𝛽 

0.6593 

0.6137 

0.0645 

0.0388 

0.6202 

1.2881 

0.0367 

0.2362 

𝑆2 
𝛼 

𝛽 

0.6270 

0.5780 

0.0507 

0.0299 

0.5929 

1.2043 

0.0292 

0.1872 

𝑆3 
𝛼 

𝛽 

0.6511 

0.6259 

0.0584 

0.0468 

0.6162 

1.3223 

0.0344 

0.2971 

𝑆4 𝛼 0.6209 0.0483 0.5900 0.0289 



101 
 

𝛽 0.5780 0.0325 1.2111 0.2156 

(80, 40) 

𝑆1 
𝛼 

𝛽 

0.6050 

0.5803 

0.0299 

0.0213 

0.5819 

1.1992 

0.0184 

0.1207 

𝑆2 
𝛼 

𝛽 

0.5749 

0.5539 

0.0214 

0.0194 

0.5581 

1.1452 

0.0143 

0.1210 

𝑆3 
𝛼 

𝛽 

0.5899 

0.5987 

0.0224 

0.0306 

0.5726 

1.2460 

0.0148 

0.1820 

𝑆4 
𝛼 

𝛽 

0.5713 

0.5625 

0.0206 

0.0252 

0.5573 

1.1732 

0.0145 

0.1701 

(80, 60) 

𝑆1 
𝛼 

𝛽 

0.5835 

0.5573 

0.0219 

0.0123 

0.5634 

1.1412 

0.0130 

0.0687 

𝑆2 
𝛼 

𝛽 

0.5654 

0.5380 

0.0177 

0.0104 

0.5477 

1.0968 

0.0107 

0.0590 

𝑆3 
𝛼 

𝛽 

0.5773 

0.5624 

0.0189 

0.0142 

0.5600 

1.1545 

0.0116 

0.0807 

𝑆4 
𝛼 

𝛽 

0.5616 

0.5379 

0.0167 

0.0112 

0.5459 

1.0993 

0.0105 

0.0662 

(100, 60) 

𝑆1 
𝛼 

𝛽 

0.5805 

0.5569 

0.0203 

0.0122 

0.5618 

1.1402 

0.0123 

0.0676 

𝑆2 
𝛼 

𝛽 

0.5594 

0.5375 

0.0154 

0.0110 

0.5446 

1.0982 

0.0099 

0.0648 

𝑆3 
𝛼 

𝛽 

0.5700 

0.5657 

0.0155 

0.0155 

0.5554 

1.1620 

0.0099 

0.0879 

𝑆4 
𝛼 

𝛽 

0.5557 

0.5407 

0.0144 

0.0130 

0.5433 

1.1097 

0.0098 

0.0811 

(100, 80) 

𝑆1 
𝛼 

𝛽 

0.5642 

0.5438 

0.0152 

0.0080 

0.5488 

1.1075 

0.0092 

0.0447 

𝑆2 
𝛼 

𝛽 

0.5508 

0.5291 

0.0127 

0.0068 

0.5368 

1.0730 

0.0078 

0.0386 

𝑆3 
𝛼 

𝛽 

0.5601 

0.5467 

0.0136 

0.0090 

0.5466 

1.1152 

0.0084 

0.0507 

𝑆4 
𝛼 

𝛽 

0.5479 

0.5282 

0.0121 

0.0072 

0.5352 

1.0727 

0.0076 

0.0420 

Notes: Sch. – scheme, Parm. – Parameter. 
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Table (3): Average,MSE for MPS of the Kum. distribution for different progressive 

Type-II censoring schemeat different values of𝜶, 𝜷,𝒏, and𝒎. 
 

(𝒏, 𝒎) Sch. Parm. 
𝜶 = 𝟏, 𝜷 = 𝟐 𝜶 = 𝟏, 𝜷 = 𝟏 

Avg. MSE Avg. MSE 

(40, 20) 

𝑆1 
𝛼 

𝛽 

1.2454 

3.1189 

0.1456 

3.7435 

1.2935 

1.4239 

0.2098 

0.5218 

𝑆2 
𝛼 

𝛽 

1.1776 

2.9212 

0.1162 

4.6127 

1.2114 

1.3238 

0.1559 

0.5547 

𝑆3 
𝛼 

𝛽 

1.2339 

3.4893 

0.1298 

7.5024 

1.2710 

1.5564 

0.1753 

0.9634 

𝑆4 
𝛼 

𝛽 

1.1838 

3.1945 

0.1269 

8.5153 

1.2126 

1.4027 

0.1621 

0.9066 

(40, 30) 

𝑆1 
𝛼 

𝛽 

1.1989 

2.7501 

0.1006 

1.5818 

1.2405 

1.2881 

0.1471 

0.2362 

𝑆2 
𝛼 

𝛽 

1.1500 

2.5467 

0.0812 

1.2949 

1.1858 

1.2043 

0.1169 

0.1871 

𝑆3 
𝛼 

𝛽 

1.1948 

2.8430 

0.0966 

2.0558 

1.2324 

1.3223 

0.1378 

0.2971 

𝑆4 
𝛼 

𝛽 

1.1477 

2.5802 

0.0830 

1.5758 

1.1801 

1.2111 

0.1157 

0.2156 

(80, 40) 

𝑆1 
𝛼 

𝛽 

1.1382 

2.5070 

0.0528 

0.7435 

1.1638 

1.1992 

0.0737 

0.1207 

𝑆2 
𝛼 

𝛽 

1.0980 

2.3929 

0.0438 

0.8114 

1.1163 

1.1451 

0.0573 

0.1210 

𝑆3 
𝛼 

𝛽 

1.1258 

2.6213 

0.0445 

1.1478 

1.1453 

1.2460 

0.0593 

0.1819 

𝑆4 
𝛼 

𝛽 

1.0995 

2.4799 

0.0466 

1.2175 

1.1148 

1.1733 

0.0583 

0.1702 

(80, 60) 

𝑆1 
𝛼 

𝛽 

1.1053 

2.3560 

0.0363 

0.4091 

1.1269 

1.1412 

0.0521 

0.0687 

𝑆2 
𝛼 

𝛽 

1.0768 

2.2506 

0.0307 

0.3588 

1.0956 

1.0969 

0.0430 

0.0590 
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𝑆3 
𝛼 

𝛽 

1.1012 

2.3888 

0.0332 

0.4833 

1.1200 

1.1545 

0.0465 

0.0807 

𝑆4 
𝛼 

𝛽 

1.0751 

2.2625 

0.0311 

0.4168 

1.0918 

1.0992 

0.0422 

0.0662 

(100, 60) 

𝑆1 
𝛼 

𝛽 

1.1032 

2.3530 

0.0346 

0.4012 

1.1237 

1.1402 

0.0492 

0.0676 

𝑆2 
𝛼 

𝛽 

1.0735 

2.2593 

0.0294 

0.4049 

1.0893 

1.0982 

0.0396 

0.0647 

𝑆3 
𝛼 

𝛽 

1.0949 

2.4049 

0.0291 

0.5212 

1.1109 

1.1621 

0.0397 

0.0879 

𝑆4 
𝛼 

𝛽 

1.0731 

2.2955 

0.0303 

0.5299 

1.0866 

1.1097 

0.0392 

0.0812 

(100, 80) 

𝑆1 
𝛼 

𝛽 

1.0811 

2.2697 

0.0257 

0.2654 

1.0977 

1.1075 

0.0368 

0.0446 

𝑆2 
𝛼 

𝛽 

1.0588 

2.1867 

0.0222 

0.2324 

1.0737 

1.0730 

0.0312 

0.0386 

𝑆3 
𝛼 

𝛽 

1.0782 

2.2883 

0.0239 

0.3026 

1.0930 

1.1150 

0.0336 

0.0508 

𝑆4 
𝛼 

𝛽 

1.0569 

2.1896 

0.0223 

0.2599 

1.0704 

1.0728 

0.0306 

0.0421 

Notes: Sch. – scheme, Parm. – Parameter. 

 

4.Real Data 

In this section, we analyze a real data set which describes the monthly 

water capacity from the Shasta reservoir in California, USA. The data are 

recorded for the month of February from 1991 to 2010 see Sultana et al. 

(2018) and Sultana et al. (2020). The data points are listed below as follows. 

0.338936, 0.431915, 0.759932, 0.724626, 0.757583, 0.811556, 0.785339, 

0.783660, 0.815627, 0.847413, 0.768007, 0.843485, 0.787408, 0.849868, 

0.695970, 0.842316, 0.828689, 0.580194, 0.430681, 0.742563. 
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To determine if the considered dataset can be appropriately analyzed using 

a Kum. distribution, a goodness of fit test is conducted. In addition to Kum. 

distribution, we also fit generalized exponential [Gen.Exp], Burr XII [Burr], 

and beta distributions to the data set. We judge the goodness of fit using 

various criteria, for example, negative log-likelihood criterion (NLC), Akaike 

information criterion (AIC) introduced by Akaike (1969), corrected AIC 

(AICc) introduced by Hurvich and Tsai (1989), and Bayesian information 

criterion (BIC) introduced by Schwarz (1978). The smaller the value of these 

criteria, the better the model fits the data. The results are shown in Table (4). 

Besides, the histogram and empirical cumulative distribution functions are 

given respectively in Figure 3. 

 

Table (4). Goodness of fit tests for different distributions for real data 

Distribution NLS AIC AICc BIC K-S p-Value 

Kum. -13.4747 -22.9494 -22.2435 -20.9579 0.2208 0.2446 

Gen.Exp -4.7925 -5.5851 -4.8791 -3.5936 0.2948 0.0490 

Burr -11.5059 -19.0118 -18.3059 -17.0204 0.2247 0.2276 

beta -12.5619 -21.1238 -20.4179 -19.1323 0.2359 0.1833 
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Figure 2: Goodness of fit tests for real data 

 

Referring to thevalues reported in table (4), we conclude that the 

Kumaraswamy distribution fits the data set good compared to the other 

models. Thus, the various point and interval estimates of 𝛼 and 𝛽for real data 

under progressive censoring schemes as following as in table(5). 

 

In table (5), we display the estimates obtained by using MPS at 𝑚 = 10. 

we computed the average estimates (Avg.) and standard deviation (SD). From 

Tables (5), we observed that the Avg. and MSE of the estimates are close 

together. 
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Table (5).Point and interval estimates of 𝜶 and 𝜷for MPS of the 

Kumaraswamy distribution under progressive censoring schemes. 

 

 

 

 

 

 

 

5. Conclusion 

In this paper, we have considered the problem of estimation of the 

unknown parameters for Kumaraswamy distribution under progressive Type-

II censoring. We derived maximum product spacings estimates for the 

unknown parameters of a Kumaraswamy distribution. In this paper, although 

we have mainly considered Type-II progressive censoring cases, the same 

method can be extended to other censoring schemes also. 

 

 

 

 

 

 

 

n m Sch. Parm. 
MPS 

Avg. SD 

2

0 

1

0 

𝑆1 
𝛼 

𝛽 

12.9105 

23.4821 

4.3516 

24.7160 

𝑆2 
𝛼 

𝛽 

8.6988 

3.7516 

3.2672 

2.9224 

𝑆3 
𝛼 

𝛽 

17.2251 

36.6941 

5.2833 

47.8674 

𝑆4 
𝛼 

𝛽 

7.8385 

2.0032 

3.0958 

1.4750 
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 الملخص: 

في هذا البحث درسنا مشكلة تقدير النقاط لمعلمات توزيع كوماراسوامي على أساس الرقابة التدريجية 

من النوع الثاني. يتم استخدام الحد الأقصى لتباعد المنتج لتقدير معلمات النموذج. لتقييم أداء مقدر النقاط 

حاكاة. لتوضيح فائدة الدراسة في الممارسة العملية ، تم أيضًا أخذ مجموعة ، يتم إجراء دراسة الم

 بيانات حقيقية في الاعتبار.

 

 الكلمات المفتاحية: 

 توزيع كوماراسوامي ، الرقابة التدريجية من النوع الثاني ، تقدير المسافات القصوى للمنتج.

 


