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Abstract 

The mixture of Type-I and Type-II censoring schemes, called the 

hybrid censoring scheme (HCS) is quite common in life testing or reliability 

experiments. Recently Type-II progressive censoring scheme (Type-II PCS) 

becomes quite popular for analyzing highly reliable data. One drawback of 

the Type-II PCS is that the length of the experiment can be quite large. In 

this paper we introduce the estimating problems of the unknown parameters 

of alpha power exponential distribution (APED) using Type-II progressive 

hybrid censoring scheme (Type-II PCS) will be considered. The maximum 

likelihood estimation (MLE) and Bayesian estimations of the unknown 

parameters based on both squared error loss (SE) and LINEX loss functions 

are obtained. We propose to apply the Markov Chain Monte Carlo 

(MCMC) technique to carry out a Bayes estimation procedure. The 

approximate and credible confidence intervals for the unknown parameters 

are obtained. Also, we introduced the estimating problems of reliability and 

hazard rate function of the APED under Type-II PHCS and the 

corresponding approximate confidence intervals. Finally, all the theoretical 

results obtained are assessed and compared using two real datasets, coming 

from engineering and management fields.  

Keywords: Maximum likelihood ; Alpha Power Exponential Distribution ; 

Type-II Progressive Hybrid Censoring ; Bayesian estimations 
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1. Introduction 

Recently, Mahdavi and Kundu (2017) introduced a new method for 

generating distribution and applied the proposed method to generate a new 

extension of the exponential distribution which called APED. They studied the 

statistical properties of the APED and used the method of maximum 

likelihood to estimate the unknown parameters under the complete sample. 

For the APED the estimation procedures available in the literature are not 

capable to include censored data.  

The random variable X is said to have a two parameter APED denoted by 

APED ( , )    as      0   and 0  , then its cumulative distribution function of 

X, for 0x  is given by 
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The probability density function corresponding to (1) is given by  
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The survival function S(x), and the hazard rate function h(x), for the APED 

for x >0, are in the following forms  
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Mahdavi and Kundu (2017), studied the statistical properties of the 

APED including, moments, moment generating function, stress strength 

parameter, order statistics. They also studied the shape behavior of the density 

and the hazard rate functions. They showed that the APED is more flexible to 

model life time data than some well-known distributions like Weibull and 

gamma based on a real data example. Nassar et al. (2020) used method of 

moments, method of percentile, maximum product of spacing method, 

weighted least squares, methods of L-moments, method of Anderson-Darling, 

ordinary least square and method of cramer-von-Mises to estimate the 

parameters of the APED. Salah (2020) studied parameters estimation of 

APED under progressive Type-II censored data using the MLE, Fisher 

information matrix and derived the approximate best linear unbiased 

estimators for the unknown parameters. Salah et al. (2021) considered 

parameters estimation of APED under type-II hybrid censored sample using 

the MLE by using the Newton-Raphson method and expectation 

maximizations algorithm. Also, they evaluated the estimate reliability and 

hazard functions by applying the invariance property of MLEs. In addition, 

the fisher information matrix is computed by applying the missing information 

rule to finding the asymptotic confidence interval.   

 Even though supposition on progressive Type-II censored (PCS -Type II) 

trials has continued to be examined in the past researches quite extensively for 

a while, PCS -Type II owns one major problem; the time taken to perform the 
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experiment can be very immense. As a result of this, Kundu and Joarder 

(2006) pioneered censoring scheme known as a Type-II PHCS, an 

amalgamation of PCS -Type II and hybrid censoring schemes. The Type-II 

PHCS allows for the life investigating tests to conclude at a time T specified 

earlier. Extensive study in regard to Type-II PHCS and its significance, allude 

to Kundu and Joarder (2006) and Childs et al. (2007). This progressively 

hybrid scheme in the last few years has also become more accepted in 

studying reliability and life-investigating tests.  

      Suppose n identical items are put on a test and the lifetime distributions of 

the n items are denoted by 
1: :,....., .n n nX X  The integer r n is fixed at the 

beginning of the experiment, and 1 2, ,...., rR R R are r prefixed integers satisfying 

1 2 .... rR R R r n     . The time point T is also fixed beforehand. At the time 

of the first failure 1 1,X R  of the remaining units are randomly removed. 

Similarly, at the time of the second failure 2 2,X R  of the remaining units are 

removed and so on. If rX T , then the experiment is terminated at the thr

failure with the withdrawals occurring after each failure according to the 

prespecified progressive censoring scheme                ( 1 2, ,...., rR R R ). However, 

if rX T , then instead of terminating the experiment by removing the 

remaining rR  units after the thr failure, we continue to observe failures 

(without any further withdrawals) up to time T. Therefore, 1 ... 0r r DR R R   

,where 1D DX T X    and DX is the thD failure time occur before time T, and D 

denote the number of failures that occur before the time point T, the observed 

data will be one of the following two forms       
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1 2

1 2 1

: ... ,
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r r D r

Case I X X X if X T

Or

Case II X X X X X if X T

   

      

      

Childs (2007) proposed the likelihood function of the observed data (without  

constant  term) as follow:  
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           (5) 

where DR   is the number of remaining units left at the time point T for case II. 

Mokhtari et al. (2011) carried out a deduction on Weibull distribution beneath 

Type-II PHCS data. Also Lin et al. (2011) estimated parameters of generalized 

Rayleigh distribution in regard to Type-II PHCS. Salem and Abo-Kasem 

(2011) considered approximation of parameters of exponentiated Weibull 

distribution based on Type-II PHCS prototypes. Recently, Ma Yongming and 

ShiYimin (2013) studied the inference of Lomax distribution grounded onto 

Type-II PHCS. They evaluated estimates due to the parameters employing the 

ML technique and made a comparison with those obtained using the Bayesian 

approaches. For more literature and outcome in regard to Type-II PHCS; refer 

to Hemmati and Khorram (2013), Bhattacharya et al. (2014), Cho et al. 

(2015), Chan et al. (2015), Li and Huang (2011), Chan et al. (2015), Gorny 

and Cramer (2016), El-Sherpieny et al. (2020) and Abuel Fotouh et al. (2021) 

among others. 
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The aim of this paper is the estimation of the unknown parameters, 

reliability and hazard rate functions of APED under Type-II PHCS .In section 

2, The MLEs and the information matrix will be discussed to obtain 

asymptotic confidence intervals for the parameters and estimate reliability and 

hazard rate functions. Further, Bayesian estimation using SE and LINEX loss 

functions will be discussed in section 3. Finally a numerical proposed methods 

using two real data sets is compared in Section 4. 

2. The Maximum Likelihood Estimation 

           In this section, MLE and its information matrix for the unknown 

parameters of the APED (2) will be obtained using Type-II PHCS (5). 

The likelihood function is given by 
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   By taking the natural logarithm of the likelihood function (6), we get 
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The MLEs ̂  and ̂  can be obtained by equating the partial 

differentiation of equation (7) with respect to   and   to zero. The partial 

differentiation of ln L  are given by 

1

1
1

1

1 1

1

1 1 1 (1 ) 1
: 0,

ln 1 1

ln 1 1 1
: ( ) ( )

ln 1

1 (1 ) 1

1

x i
i

i

x i

i i

x i
i

x i

x er
x

i e
i

r D
x x

i i r

x e

i e

r e
Case I r e R

L
Case II r D r D e e

e
R












 





     

    



 









 





 

  

 



   
             

   
         

    

  
 





 

*

1

1 (1 ) 1
0

1

T

T

T e

D e

e
R





 

 





 










             

 (8)                 

and 
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Since the equations (8) and (9) after equating them to zero are clearly 

transcendental equations in ̂  and ̂ that is, no closed form solutions are 

known they must be solved by iterative numerical techniques to provide 

solutions (estimates),  ̂  and ̂ , in the desired degree of accuracy. 

By using the property of invariance (replacing   and  by their MLEs  

̂  and ̂ ) ,we can obtain the MLE of the survival and hazard function from 

equations (3) and (4) by 
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To study the variation of the MLEs  ̂  and ̂ , the asymptotic variance 

of  these estimators are obtained. The asymptotic variance covariance matrix 

of ̂  and ̂   is obtained by inverting the information matrix with elements 

that are negative expected values of the second order derivatives of natural 

logarithms of the likelihood function, for sufficiently large samples, a 

reasonable approximation to the asymptotic variance covariance matrix of the  

estimators can be obtained as 
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The elements of the previous sample information matrix can be obtained such 
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Diagonal elements of 1 ˆˆ( , )I    provides the asymptotic variance of   

and    respectively. Then using large sample theory a two sided 100( %1  )   

approximate confidence interval (ACI) for    can be constructed as 

1 2
ˆ ˆ( )Z Var  and similarly, for  the two sided 100( %1  )  approximate 

confidence interval can be obtained as 1 2
ˆ ˆ( )Z Var  . 

To construct the ACIs of ( )S x  and ( )h x , The variances of them is 

needed Therefore, the delta method is considered to obtain the approximate 

estimates of the variance of ˆ( )S x  and ˆ( )h x . Delta method is a general 

approach for computing ACIs for any function of the MLEs ̂  and ̂ , (See 
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Greene (2012)). According to this method, the variance of ˆ( )S x  and ˆ( )h x , can 

be approximated, by 
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Hence, the 100( %1  )  ACIs of ( )S x  and ( )h x , are given by 
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respectively.  

3. Bayesian Estimation 

In this section, Bayesian method is used to obtain the estimators for the 

unknown parameters of APED using SE and LINEX loss functions. We 

consider the gamma prior distribution for the parameters   and   as 
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                                                 (13) 

      Combining (13) with equation (6) and using Bayes theorem, the joint 

posterior distribution can be obtained as follow: 



 

182 

 

     

2 1 1 2

2 1 1 2

1
1 1

1 1 11

1
1 1

1 1 12

1

1 ln
:

1 1

1 ln
( , \ ) :

1 1

ln

1

ix i

x i
i

ix i

x i
i

R
er r r

r a r a b b x e

i i i

R
er r r

r D a r D a b b x e

i i i

i r

Case I e e e

x Case II e e e









  

  

  
  

  

  
     

  














     

  


       

  

 

 
    

 
     




  

  

*

1

1 1 1

DT

x i
i

R
eD D D

x e

i r i r

e



  









 

   










  
     

  

 

where       

        

2 1 1 2

1
1 1

1

1 1 10 0

ln

1 1

ix i

x i
i

R
er r r

r a r a b b x e

i i i

e e e d d



    
     

 




  

     

  

 
     

    and       

2 1 1 2

*

1
1 1

2

1 1 1 10 0

1

1 1

ln ln

1 1 1

1

ix i

x i
i

DT

x i
i

R
er r r D

r D a r D a b b x e

i i i i r

R
eD D

x e

i r i r

e e e

e d d









  



   
   

  

 
  











  
       

    


 

   

 
      

 
    

   

 

 

       Marginal posteriors of a parameter is obtained by integrating the joint 

posterior distribution with respect to the other parameter and hence the 

marginal posterior of   can be written, after simplification, as  
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Similarly integrating the joint posterior with respect to  , the marginal 

posterior of  can be obtained as 
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Under SE loss function the Bayes estimators for parameters   and  of 
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respectively.                                                                                                                                 

Following Zellner (1986), the Bayes estimators under LINEX loss 

function are  

1
ˆ ln( (e ))c

LINEX E
c

  
 
and 
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respectively, where ( )E   denotes the posterior expectation. These estimators 

for parameters of APED  and   can be expressed as  
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 (19) 

respectively.                                                                                                                                 

Equations (14), (15), (16), (17), (18) and (19) in general cannot be 

obtained in a closed form, so the approximate methods is employed. MCMC 

using MH algorithm has been used to carry out the Bayes estimates and also to 

construct the associate HPD credible intervals by using an R code program 

4. Real Data Applications 

This section deals with analyzing two real datasets, coming from 

engineering and management fields, to show the adaptability of the 

methodologies proposed in practical situations. 

4.1 Electronic devices data 

This application is devoted to illustrating the applicability and flexibility 

of the proposed distribution by analyzing a real-life data set from the 

engineering field. The data set, reported by Wang (2000), consists of 18 

observations of failure times of electronic devices. These failure times have 

been ordered and listed in Table 1.  
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Table 1. Failure times of electronic devices. 

5, 11, 21, 31, 46, 75, 98, 122, 145, 165, 196, 224, 

245, 293, 321, 330, 350, 420 

 

One question arises whether the data fit APED or not. For this purpose, 

based on an electronic devices dataset, the Kolmogorov-Smirnov (K-S), 

Anderson-Darling (A-D) and Cramér-von Mises CvM) goodness-of-fit test 

statistics with associated p-values are used. In addition, using selection 

measures reported in Table 2, the APED is compared to five competing 

lifetime models, namely; Lomax distribution (LD), gamma distribution (GD), 

Weibull distribution (WD), exponentiated-Weibull distribution (EWD) and 

generalized-exponential distribution (GED). The corresponding PDFs of the 

competing models (for 0x ) are written in Table 3. 

Table 2. Some of useful selection measures. 

Measure Abbreviate Formula 

Negative log-likelihood criterion L̂  NLC  ˆlog ( )L
 

   

Akaike’s information criterion AIC ˆ2( )  L  

Consistent Akaike’s information 

criterion 

CAIC ˆ2 (2 ( 1))n n   L  

Bayesian information criterion BIC ˆ2 log( )nL  

Hannan-Quinn information criterion HQIC ˆ2( log(log( )) )n  L  

 

Clearly, n  and  , as in Table 2, represent the sample size and the 

number of model parameters, respectively. Obviously, the best distribution 

corresponds to the lowest value of these criteria and highest p-value. 
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Table 3. Some competing models of the APE distribution. 

Model PDF Author(s) 

LD ( 1)( ) (1 )     f x x  Lomax (1954) 

GD 1( ) ( ( )) exp( )     f x x x  Johnson et al. (1994) 

WD 1( ) exp( )   f x x x  Weibull (1951) 

EWD 1 1( ) (1 )x xf x x e e
         Mudholkar & Srivastava (1993) 

GED  
1

( ) exp( ) 1 exp( )


  


   f x x x  Gupta and Kundu (2001) 

To estimate the parameters of the considered distributions and also to 

evaluate the goodness-of-fit selection measures, the ‘Adequacy Model’ 

package proposed by Marinho et al. (2019) is implemented via R statistical 

programming software. However, the calculated MLEs with their standard 

errors (SEs) of the model parameters and corresponding selection measures 

are computed and listed in Table 4. It shows that the APE lifetime model is the 

best distribution among all fitted competitive models under electronic devices 

dataset, since it has the smallest goodness of statistic values and highest p-

value. 

Table 4. Summary fit based on electronic devices dataset. 

Model MLE(SE) NLC AIC CAIC BIC HQIC K-S 

(p-value) 

A-D CvM 

    

APED 3.0804 

(3.8588) 

0.0074 

(0.0022) 

110.32 224.64 225.44 226.43 224.89 0.1035 

(0.979) 

0.3366 0.0487 

LD 3.1887 

(0.9886) 

0.0023 

(0.0006) 

111.95 227.90 228.70 229.68 228.14 0.1534 

(0.735) 

0.5408 0.0850 

GD 1.1156 

(0.3214) 

0.0065 

(0.0023) 

110.60 225.21 226.01 226.99 225.45 0.1208 

(0.927) 

0.3974 0.0597 

WD 1.1458 

(0.0702) 

0.0026 

(0.0008) 

110.45 224.89 225.69 226.67 225.14 0.1132 

(0.955) 

0.3649 0.0540 

EWD 18.734 

(5.9207) 

0.2603 

(0.0222) 

113.33 230.65 231.45 232.43 230.90 0.1713 

(0.607) 

0.8329 0.1381 

GED 1.0915 

(0.3312) 

0.0061 

(0.0017) 

110.63 225.25 226.05 227.03 225.50 0.1214 

(0.925) 

0.4005 0.0602 

Note: The best model is corresponding to bold values. 



 

190 

 

Moreover, for goodness-of-fit of distributions using graphical 

presentation method, we draw quantile-quantile (Q-Q) plots of the competitive 

models using depicts the points 1

( )
ˆ{ (( 0.5) ; ), },  1,2,..., ,  iF i n x i n  where ̂  is 

the MLE of  , which are shown in Figure 1. From Tables 8 and 9, it can be 

seen that the APE model is the best model comparing with other fitted models 

in the literature for fitting lifetime real data, since it has the smallest goodness 

of statistic values and highest p-values. One may also show that the APED is a 

good competitor and may be used as an alternative to the considered 

distributions. Furthermore, the Q-Q plots support our findings. For more 

fitting illustration, in Figure 2, we have also provided two plots computed at 

the estimated model parameters of APED, LD, GD, WD, EWD and GED; Plot 

(a) represents the histogram of the electronic devices data and the fitted PDFs, 

Plot (b) represents the fitted and empirical survival functions. It is observed 

that, from Figure 2, the graphical presentations support our numerical 

findings. 

To prove the existence and uniqueness of the MLEs ̂  and ̂  of   and 

 , respectively, the contour plot of the log-likelihood function with respect to 

the two-parameter APED using the complete electronic devices dataset as is 

plotted and displayed in Figure 3. The maximum of the log-likelihood 

function is denoted by point x in the innermost contour. The coordinates of x-

point provide the MLEs of   and   which are becomes ˆ 3.0805   and 

ˆ 0.0074  . Further, it shows that the MLEs are exist and are also unique. 
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Figure 1. The Q-Q plots of the APED and various models for electronic devices 

dataset. 

              

                              (a)                                                                     (b) 

Figure 2. Estimated the density and survival functions of the APED and various 

models for electronic devices dataset. 
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Figure 3. Contour plot of log-likelihood function for different values of   and   for 

an electronic devices dataset. 
 

Now, from the electronic devices dataset as in Table 1, various artificial 

data by Type-II PHCS, when 8r   and 1,  1,2,...,iR i r  , for different choices 

of threshold time T , are created and provided in Table 5. Using data sets of 

Table 5, the MLEs and the Bayes MCMC estimates with their SEs of the 

unknown parameters   and  , as well as, the reliability characteristics ( )S t  

and ( )h t  at given mission time 50t  , are computed and listed in Table 6. The 

initial values for the unknown parameters for running the MCMC sampler 

algorithm were taken to be their MLEs. Moreover, two-sided 95% ACI/HPD 

credible intervals with their lengths are calculated and listed in Table 7.  

Since there is no any prior information about the model parameters, the 

Bayes estimates are developed using SE and LINEX (for ( 5, 0.05, 5)     ) loss 

functions under improper gamma priors, i.e., 0,  1, 2
i i

a b i   . However, for 

computational convenience, all given hyper-parameters are set to be 0.0001. 

Using the MCMC algorithm, we generate 30,000 MCMC samples and then 

first 5000 iterations (burn-in period) have been discarded from the generated 
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sequence. Moreover, some important characteristics such as: mean, median, 

mode, standard deviation (SD) and skewness (Sk.) for MCMC posterior 

distributions of  ,  , ( )S t  and ( )h t  after bun-in; are computed and provided 

in Table 7. 

Table 5. Two Type-II PHCS samples generated from electronic devices data. 

Sample ( )T D  *R  Type-II PHCS samples 

1 100(7) 3 5, 21, 46, 98, 145, 196, 245, 321 

2 180(10) 1 5, 21, 46, 98, 145, 196, 245, 321, 330, 350 

Table 6.  The classical and Bayes estimates (with their SEs) of  ,  , ( )S t  and 

( )h t  for an electronic devices dataset. 

Sample 

 

c   

Parameter MLE MCMC 

SE LINEX 

-5 -0.05 +5 

1
   2.0007 

(0.43×10+1) 

1.9999 

(5.71×10-6) 

1.9998 

(7.42×10-8) 

1.9999 

(8.70×10-8) 

1.9999 

(9.99×10-6) 

  0.0036 

(2.80×10-3) 

0.0044 

(4.77×10-6) 

0.0044 

(4.81×10-6) 

0.0043 

(4.80×10-6) 

0.0044 

(4.79×10-6) 

( )S t  0.8781 

(5.86×10-2) 

0.8548 

(1.52×10-4) 

0.8563 

(1.44×10-4) 

0.8548 

(1.53×10-4) 

0.8534 

(1.62×10-4) 

( )h t  0.0027 

(1.20×10-3) 

0.0033 

(3.80×10-6) 

0.0033 

(3.83×10-6) 

0.0033 

(3.82×10-6) 

0.0033 

(3.82×10-6) 

2   8.3172 

(0.71×10+1) 

8.3171 

(5.72×10-6) 

8.3171 

(4.72×10-8) 

8.3172 

(6.00×10-8) 

8.3172 

(7.31×10-8) 

  0.0064 

(1.80×10-3) 

0.0062 

(4.81×10-6) 

0.0062 

(1.24×10-6) 

0.0062 

(1.25×10-6) 

0.0062 

(1.26×10-6) 

( )S t  0.8926 

(4.02×10-2) 

0.8961 

(8.99×10-5) 

0.8966 

(2.56×10-5) 

0.8961 

(2.25×10-5) 

0.8956 

(1.93×10-5) 

( )h t  0.0027 

(1.00×10-3) 

0.0026 

(2.61×10-6) 

0.0026 

(6.08×10-7) 

0.0026 

(6.11×10-7) 

0.0026 

(6.13×10-7) 
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Table 7. Two-sided 95% asymptotic/credible intervals (first-line) with their lengths 

(second-line) of  ,  , ( )S t  and ( )h t  for an electronic devices dataset. 

Sample Parameter ACI HPD 

1
   (0.0000,10.589) 

10.589 

(1.9983,2.0018) 

0.0035 

  (0.0000,0.0091) 

0.0091 

(0.0029,0.0058) 

0.0029 
( )S t  (0.7632,0.9931) 

0.2298 

(0.8073,0.9012) 

0.0939 
( )h t  (0.0004,0.0050) 

0.0046 

(0.0021,0.0044) 

0.0023 

2   (0.0000,22.156) 

22.156 

(8.3154,8.3190) 

0.0036 

  (0.0029,0.0099) 

0.0070 

(0.0048,0.0078) 

0.0030 
( )S t  (0.8138,0.9714) 

0.1576 

(0.8678,0.9237) 

0.0558 
( )h t  (0.0008,0.0046) 

0.0038 

(0.0018,0.0034) 

0.0016 

     

     

(a) Sample 1 
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(b) Sample 2 

 

Figure 4. MCMC trace plots of  ,  , ( )S t  and ( )h t  for an electronic devices dataset. 
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(a) Sample 1 

           

  

(b) Sample 2 

Figure 5. Histogram and kernel density estimates of  ,  , ( )S t  and ( )h t  for 

an electronic devices dataset. 
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From Tables 6-7, due to the lack of prior information about   and  , it 

can be seen that the estimated results of point and interval estimates are not 

much different, as expected. Also, the Bayes MCMC estimates of  ,  , ( )S t  

and ( )h t  using LINEX loss function have performed superior than those 

obtained based on SE function and both better than the MLEs in terms of their 

standard errors and confidence interval lengths. To assess the convergence of 

25,000 MCMC outputs, using PHCS-TII datasets reported in Table 5, trace 

plots of the conditional posterior distributions of  ,  , ( )S t  and ( )h t  are 

plotted in Figure 4. In each trace plot, the sample mean (solid (—) horizontal 

line) and 95% HPD credible intervals (dotes ( ) horizontal line). Further, it 

indicates that the MH algorithm sampler converges very well. In addition, the 

approximate conditional PDF of  ,  , ( )S t  and ( )h t  with their histograms 

based on 25,000 chain values using the Gaussian kernel are presented in 

Figure 5. Similarly, in each histogram plot, the corresponding sample mean of 

each unknown parameter is displayed with vertical dash-dotted line (:). It is 

evident from the estimates that the generated posteriors of all unknown 

parameters of APE model are nearly symmetrical. 

Table 7. The MCMC statistics of  ,  , ( )S t  and ( )h t  under electronic devices dataset. 

Sample Parameter Mean Median Mode SD Sk. 

1   1.99998 1.99999 1.72596 9.02×10-4 -0.03563 

  0.00436 0.00434 0.00586 7.55×10-4 0.06553 

( )S t  0.85481 0.85506 0.80742 2.41×10-2 -0.01731 

( )h t  0.00326 0.00325 0.00448 6.01×10-4 0.12223 

2   8.31719 8.31720 8.31533 9.04×10-4 -0.00725 

  0.00620 0.00619 0.00568 7.61×10-4 0.05651 

( )S t  0.89610 0.89638 0.89787 1.42×10-2 -0.12040 

( )h t  0.00260 0.00258 0.00231 4.13×10-4 0.22360 
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4.2  Bank service waiting-time 

 To illustrate the usefulness and applicability of the proposed 

methodologies to real-life phenomena, we consider a dataset that representing 

the waiting times (in minutes) before service of 100 Bank customers, see 

Table 8. This data was first examined by Ghitany et al. (2008) and also 

recently analyzed by Irshad et al. (2021).  

Table 8. Data of waiting times of 100 bank customers. 

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7 

2.9 3.1 3.2 3.3 3.5 3.6 4.0 4.1 4.2 4.2 

4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9 

5.0 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3 

6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 8.0 

8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6 

9.7 9.8 10.7 10.9 11 11 11.1 11.2 11.2 11.5 

11.9 12.4 12.5 12.9 13 13.1 13.3 13.6 13.7 13.9 

14.1 15.4 15.4 17.3 17.3 18.1 18.2 18.4 18.9 19 

19.9 20.6 21.3 21.4 21.9 23 27 31.6 33.1 38.5 
  

To verify if these data are modeled by the APE distribution, the K-S 

distance with associated p-value is considered. First, we calculate the MLEs 

(with their SEs) of the unknown parameter   and   which are 

21.149(14.143) and 0.1831(0.0197), respectively. Thus, the K-S distance is 

0.0528 with p-value 0.943. This result indicates that the APED a suitable 

model to fit head-neck cancer data. Further, using the full waiting-times of 

bank, the contour plot of the log-likelihood function with respect to   and   

is displayed in Figure 6 in order to show the existence and uniqueness of the 

MLEs ̂  and ̂ . The coordinates of x-point provide the MLEs of   and   

which are close to 21.149 and 0.183, respectively. Further, one can conclude 
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that the MLEs ̂  and ̂  of   and  , respectively, are exists and are also 

unique. 

 

Figure 6. Contour plot of log-likelihood function for different values of   and   

under waiting-times of bank. 
 

 Using dataset in Table 1, we draw two artificial data by Type-II PHCS, 

when 20r   and 3,  1,2,...,iR i r  , for different choices of threshold time T , 

are generated and presented in Table 9. For both generated samples, the MLEs 

and the Bayes MCMC estimates with their SEs of the unknown APE 

parameters   and  , as well as, the reliability characteristics ( )S t  and ( )h t  at 

given mission time 4t  , are computed and listed in Table 10. Moreover, two-

sided 95% ACI/HPD credible intervals with their lengths are calculated and 

listed in Table 11.  

Table 9. Two Type-II PHCS samples generated from the waiting-times of bank. 

Sample ( )T D  *R  PHCS-TII samples 

1 4(16) 23 0.8, 1.8, 2.6, 3.2, 4.0, 4.3, 4.6, 4.9, 5.5, 6.2, 6.7, 7.1, 

7.7, 8.6, 8.9, 9.7, 11, 11.2, 12.5,13.3 

2 5(30) 13 0.8, 1.8, 2.6, 3.2, 4.0, 4.3, 4.6, 4.9, 5.5, 6.2, 6.7, 7.1, 

7.7, 8.6, 8.9, 9.7, 11, 11.2, 12.5, 13.3, 13.6, 13.7, 

13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2 
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Table 10. The classical and Bayes estimates (with their SEs) of  ,  , ( )S t  and 
( )h t  based on the waiting-times of bank. 

Sample 

 

c   

Parameter MLE MCMC 

SE LINEX 

-5 -0.05 +5 

1
   42.514 

(0.60×10+1) 

42.514 

(5.00×10-5) 

42.513 

(1.43×10-6) 

42.513 

(2.41×10-6) 

42.513 

(3.40×10-6) 

  0.0958 

(1.27×10-2) 

0.1055 

(4.40×10-5) 

0.1056 

(6.19×10-5) 

0.1055 

(6.11×10-5) 

0.1053 

(6.04×10-5) 

( )S t  0.9446 

(1.03×10-2) 

0.9364 

(3.79×10-5) 

0.9365 

(5.14×10-5) 

0.9364 

(5.19×10-5) 

0.9363 

(5.25×10-5) 

( )h t  0.0206 

(4.49×10-3) 

0.0243 

(1.73×10-5) 

0.0244 

(2.37×10-5) 

0.0243 

(2.36×10-5) 

0.0243 

(2.35×10-5) 

2   440.04 

(0.48×10+1) 

440.04 

(5.69×10-5) 

440.39 

(1.89×10-6) 

440.39 

(2.15×10-6) 

440.39 

(3.25×10-6) 

  0.1725 

(1.47×10-2) 

0.1784 

(4.92×10-5) 

0.1786 

(3.85×10-5) 

0.1784 

(3.76×10-5) 

0.1783 

(3.66×10-5) 

( )S t  0.9550 

(8.50×10-3) 

0.9513 

(2.98×10-5) 

0.9513 

(2.28×10-5) 

0.9513 

(2.32×10-5) 

0.9512 

(2.35×10-5) 

( )h t  0.0261 

(5.61×10-3) 

0.0285 

(1.98×10-5) 

0.0286 

(1.56×10-5) 

0.0285 

(1.54×10-5) 

0.0285 

(1.53×10-5) 

Table 11. Two-sided 95% asymptotic/credible intervals (first-line) with their lengths 

(second-line) of  ,  , ( )S t  and ( )h t  based on the waiting-times of bank. 
Sample Parameter ACI HPD 

1
   (30.588,54.439) 

23.851 

(42.498,42.529) 

0.0309 

  (0.0708,0.1207) 

0.0499 

(0.0912,0.1184) 

0.0272 

( )S t  (0.9244,0.9649) 

0.0404 

(0.9252,0.9485) 

0.0233 

( )h t  (0.0118,0.0294) 

0.0176 

(0.0189,0.0295) 

0.0106 

2   (430.55,449.54) 

18.986 

(440.02,440.06) 

0.0400 

  (0.1436,0.2013) 

0.0577 

(0.1633,0.1939) 

0.0306 

( )S t  (0.9833,0.9716) 

0.0333 

(0.9422,0.9608) 

0.0186 

( )h t  (0.0151,0.0371) (0.0223,0.0346) 
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0.0220 0.0123 

        

    

(a) Sample 1 
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(b) Sample 2 

Figure 7. MCMC trace plots of  ,  , ( )S t  and ( )h t  based on the waiting-times of 

bank. 

     

         

(a) Sample 1 
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(b) Sample 2 

Figure 8. Histogram and kernel density estimates of  ,  , ( )S t  and ( )h t  based on 

the waiting-times of bank. 

Using SE and LINEX (for ( 5, 0.05, 5)     ) loss functions, the Bayes 

estimates are obtained under non-informative priors, i.e., 0.0001,  1,2
i i

a b i   . 

Using the MCMC algorithm, we generate 30,000 MCMC samples and then 

first 5000 iterations (burn-in period) have been discarded from the generated 

sequence. Moreover, some important characteristics of MCMC outputs for  , 

 , ( )S t  and ( )h t  after bun-in are computed and provided in Table 12. 

All evaluations are implemented by R statistical programming language 

software by two useful statistical packages recommended by Elshahhat and 

Nassar (2021), namely; ’CODA’ package used for carried out the 

computations of MCMC procudre proposed by Plummer et al. (2006), 
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’maxLik’ package which using N-R method of maximization in the 

computations, proposed by Henningsen and Toomet (2011). 

Table 12. The MCMC statistics of  ,  , ( )S t  and ( )h t  based on the waiting-times of 

bank. 

Sample Parameter Mean Median Mode SD Sk. 

1   42.5136 42.5135 42.5119 7.90×10-3  0.04154 

  0.10547 0.10539 0.12464 6.96×10-3 -0.03940 

( )S t  0.93641 0.93659 0.91909 5.99×10-3 -0.07665 

( )h t  0.02433 0.02422 0.03243 2.74×10-3 0.13241 

2   440.040 440.039 440.038 8.99×10-3 -0.02686 

  0.17844 0.17851 0.19644 7.78×10-3 -0.04362 

( )S t  0.95129 0.95139 0.93974 4.72×10-3 -0.13743 

( )h t  0.02853 0.02846 0.00313 3.13×10-3 0.16116 

 

It can be seen that, from Tables 10-11, the estimated results of  ,  , 

( )S t  and ( )h t  are quite close to each other, as expected. Also, in terms of 

minimum standard errors, the Bayes MCMC estimates have performed better 

than the MLEs. Also, it is observed that the length of the HPD credible 

interval is less than the corresponding length of the ACI. Similarly, for both 

samples 1 and 2 generated from the waiting-times of bank, trace plots of the 

conditional distributions of  ,  , ( )S t  and ( )h t  are plotted in Figure 7. It 

showed that the MCMC procedure converges very well. In addition, the 

approximate conditional PDF of  ,  , ( )S t  and ( )h t with their histograms are 

also plotted in Figure 8. It is evident from the estimates that the generated 

posteriors of all unknown parameters of APE model are nearly symmetrical. 

Finally, our results based on the waiting-times of bank support our conclusion 

using electronic devices dataset. 
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