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Abstract

A Fluid queue is a mathematical model used to describe fluid level in a
reservoir subject to randomly determined periods of filling and emptying
the system without interruption called a buffer, according to a randomly
varying rate regulated by an external stochastic environment. Such fluid
queues are used as a mathematical tool for modeling, for example, to
approximate discrete models, model the spread of wildfires in ruin theory
and to model high speed data networks, a router, computer networks
including call admission control, traffic shaping and modeling of TCP and
production and inventory systems. The fluid from the first phase (i.e, fluid
output of the m™ ; m 71.queue) goes to the second phase represents a buffer
with a constant leak rate c. We always assume that service rate is greater
than buffer, u > c. In this paper, a fluid queue driven by infinite queue with
fixed —size batch arrivals. The generating function technique is used to
obtain the expressions for steady-state distribution of both the buffer
content and stationary state probabilities of background birth-death process.
Hence, the performance measures are computed whereas the server
utilization analysis and mean buffer content are investigated. . In addition,
some numerical results are provided to illustrate the effect of various

parameters on the distribution of the buffer content.

Keywords: Fluid Queue; m®™ /;m 71Queue; Fixed-size Batch Arrivals;

Buffer Content; Generating Function Method.
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1. Introduction

Fluid queueing systems with infinite space are considered one of the
important and useful tools which contribute to modern applications. Indeed,
several situations arise in which these phenomena occur and need to be
examined. Traffic shaping, modeling of transport control protocol,
inventory and production systems are known examples of these systems.
For more details, see Adan and Resing (1996), Anick et al. (1982), Barbot
(2002), Kulkarni (1997), and Mitra (1988) and references therein.

Fluid queues driven by an infinite queueing system have been studied by
many authors. Closed form expressions in terms of modified Bessel
functions are obtained by Sherif Ammar (2015) for the model in fluid
queues driven by an M /M /1 queue. In addition, the spectral expansion is
used to obtain the distribution of the exact buffer occupancy. In Darwiesh
et al. (2021 ), a fluid queue having an infinite buffer capacity is considered
for the cases where it is filled and depleted by a fluid at constant rates. The
simple series form is applied to the joint stationary distribution of the
buffer occupancy. Parthasarathy and Vijyashree ( 2002 ) gave the solutions

of a fluid queue fed by an M /M /1 \when a general boundary condition is
assumed. They compared the results with those of the model studied by
Adan and Resing (1996 ). Mao et al .(2010) investigated a fluid model

which is driven by a simple queue with single and multiple exponential
vacations. In this case, a system of first order homogeneous linear
differential equations is obtained to describe the distribution of the
trivariate process of external environment and buffer content. This system
has been solved utilizing the standard spectral method. In order to study the
buffer occupancy distribution for high-speed networks, the authors in
Viswanathan et al. (2010) used two independent finite state birth-death
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processes in a fluid queue model. Furthermore, a plethora of studies has
discussed the fluid queues driven by birth-death process and including
vacations and disasters (see for example, Ammar (2014) and Mao et al.
(2010, 2011, 2012).

In this paper, the authors analyze a fluid model subject to simple queue
drive with fixed-size batch arrivals. More specifically, the generating
function for the system is found for the steady-state distribution of buffer
occupancy in Section 2. The solution is obtained using the power series in
Section 3. The performance measures, such as mean buffer content and
server utilization, are determined in Section 4. Finally, the numerical
illustrations and conclusions are presented in Sections 5 and 6.

2. Model Description

Suppose that there is a fluid model that is driven by a single server
queueing process with service rates and state-dependent arrival. The model
is formed from an infinitely large buffer for which the fluid flow is
regulated via the state of the background queueing process. Denoting the

background queuing process by {X (t),t >0}which has values in
Q={0,1 2, ..}. In particular, X (t) refers to the number of customers in the
system at time t. Let4, and; denote the mean arrival and service rates,

respectively, where there are j customers in the queue. The arrivals are
supposed to be of Poisson fashion whereas the service times are
exponentially distributed. In addition, the service discipline is supposed to
be first is first out (FIFO). Denoting by C(t), the content of fluid in the
buffer at time t. When the system is in state j, the buffer content changes at

the net input rater; =r . Equivalently, it is the input rate minus the output

rate, that implies that it can take both positive or negative values. For the
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case where the buffer is empty and the Markov Process is in a state 0 with

rate r, <0, the buffer will still empty. Assume that 4, =0 and x4 =4, =0, if
j Q. Itis clear that the 2-dimensional process { X (t),C(t), t >0} establishes a

Markov process with unique stationary distribution under a suitable
stability condition.

Therefore, the following differential equation describes the rate of

change in C(t),

0, if C(t)=0,and X (t) =0
%: r,, if C(t)=0,and X (t) >0, (1)
r, if C(t)>0.

The limit distribution for C(t)exists as t — oo, and the stationary net input

rate must be negative. In other words,

N
d=r, 7r0+rz 7=y +r(l-m,) <0, (2)

i

i min( j,k) kﬂ,
and 7y =1-p, 7[]:(_) Z i ;,0:7-

m=1

Therefore
d=(p,-r)d—p)+r.

wherez;, jeQ are the stationary state probabilities associated with the

background birth-death process. Moreover, assume that the above stability
conditions are satisfied.

Assuming that
Ft,x)=Pr{X{)=j,Ct)<x}, jeQ, t,x20, (3)

and
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Fj(x)E!LrDPr{X(t):j,C(t)SX}, jeQ, x=0 4)

The, it can be confirmed that the Kolmogorov forward equations for the

Markov process { X (t),C(t)} are given by

oR(tx) _  OR(tXx)

= s AR )+ 4R ), )
oF.(t,X) oF.(t,x) .

Jat =—r Jax =2+ 1) Fy (6.0 + 1,0 Fpa (6 X), j=12,..k-1 (6)
LX) FLY — (A + ) Fy (0 + A F Ly (6 X) + 10y (6%), =K,k +1 (7)

ot OX

If the process is in equilibrium state, then
oF;(t,x)/ot=0, F;(t,x)=F;(x).

Hence, the above system (5-7) can be reduced to the following system:

IR _ A k4 4 F (), (8)
dx I, I

dFj(X)=—(/Ij+ﬂj)F.(x)+@F.+1(x), x>0, j=12,..k-1
dx : r’ (9)
) A . ) )

dFOJbEX):_( J+ﬂl)Fj(x)+%|:j_l(x)+%ﬁ+l(x),xZO, j=kk+1,... (10)

The buffer contents increase for positive net input rate of fluid flow for the
buffer. The buffer cannot be empty in this case. It follows that the solution

to (8-10) should be satisfied by the boundary conditions
F.(0=0, je{jeQir>0} (11)

Pr{C =0}=F,(0) =d,, for some constant d, (0<d, <1 (12)
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The stationary probability of the empty fluid queue is found by:

7Ty + D17,
pric=0p=d - T _Ihtrlom) (13)
rO rO rO

Moreover, the next relations are also satisfied

F, (oo)E!Lrg F(X)=7, jeQ (14)

3. Stationary Solution of Fluid Queue driven by M™* /M /1 Queue

The fluid model studied in previous section is investigated when it has
the background process as an M™/M /1 queue with fixed-size batch
arrivals. Let the mean arrival and service rates be A,=4and u =u ,

respectively.

For F,(x)assume that H(z,x) represents the moment generating function,

H(z,s)the Laplace- Stieltjes transform of Fi(x) .

H(z,x)=r—;’F0(x)+iz” F (x) ,With H(z,0) = rf’:_j(’ .

Multiplying (9) and (10) by z’ and then summing over all integer values
of j ,we get

oH(z,x) _ 1

X

+E[”—r°<1—z1)—(1—r—°)<1—zk>} Fy(X)
rl r r

[—(/1+,u)+,u 7t +/12"] H(z,x)
(15)

Now, the solution of (15) is determined as follows

H(z,X)= %Troexp—%(/ﬂy)x.exp%(l 2+ puzt)x
B2 oxp-2 (2 k- Chexp (2" + 47 k-0 o) 86 19
A T

205y 2) e (2 + k- 0) izt + 2 k- € Fy(86

132



The function exp%(/tzk+,uz_l)x IS embedded in the generating function

solution (16). It can be written as

exp= (/lz +uz)x= Zz [ )k+1V(k’(ax) (17)
u

N=—o0

1 1
with o =[g* 1]« = ,U(%)k”' ,

(k) 0 I(k+l)+n ® 0 I(k+1) n
V% (x andV X .
0= i 00=2 i

For n>o0the variable o, is defined as o, =[E] where the notation [E]

designates the smallest integer not less than E
By substituting from Eqg. (17) into Eg. (16) and comparing the

coefficients of z"on both sides of Eq. (16) results in

F.00 = 2% exp- 2 (24 pix (V0 (a)
r r U
v ‘;—“%) Jexp =2+ )¢ {vn“’ (@) -2V (ag)} F (x—)d¢

—i<1—r—°)(i)k+ljexp—(z+u)§{v“(am %y V(”(ai)}Fo(X—é“)dé,n>0
r ru (18)

Obtaining Laplace transform of equations (15) and doing some
simplifications, we get

z{ol0 r +{’”° (1-zY)—a1-Tya- zk)} Ifo(s)}
H(z,s) = r '

Aty i . (19)
r r

2" (s +

Noting that the denominator of Eq. (19) is a polynomial of degree k +1
in z and hence it has k +1 zeros. However, the Rouch’s theorem implies

that only one zero lies within the unit circle ( say z,(s)).
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Hence, we get

A d,r
£ ()= oo (20)
A0 (219 -D-A(" -DA-2" ()

which can be rewritten as

) =%Z:’_Oizsﬂ(s) 05 1)
where g(s) = A=) Z[z )]
Hlg =

By computing the inverse of Eq. (21), it yields that
R (x )— Z Z[Z OO * [g ()™ (22)
and g(9 == 3z, (o
ﬂro
Here *n denotes the n-fold convolution.

Now, employing the method proposed by Luchak (1956, 1958) is used to

calculate the inverse Laplace transform in the way that

[2,()]" = L[z, ()] 'UV{T'_,_ N _n e }e(lw)r
! ,

o= n! (nk+v)!

where s and 9=;L

r “
Therefore, the closed form expressions for F, (x)of the two models (18)

and (22) are obtained analytically. The stationary distribution of the buffer
content is obtained by:

F(x) = !Lrg Pr(C(t) <x) = i F ()

134



FO) == LI 0)Fo(X) (23)

In addition, all the joint steady state probabilities are computed explicitly in

terms of a power series function.

Remark, the generating function of the fluid queue given with M™ /M /1
queue in steady state can be obtained from that of fluid queue having
M /E, /1queue (via replacing ku  byu) in EQ.(15) (with k=2 ), see
Vijayashree and Anjuka (2016).

4. Performance Measures of Fluid Model

In this section, some crucial performance measures are examined. The
formulations for these measures are defined as follows:
4.1. Server Utilization

The probability that the buffer is non-empty is given by

Utilization = 1—i F,(0) =1-F,(0). (24)
j=0
or Utilization =1-d,, 0<d, <1. (25)
where
g _d_ (ro—r)(l—,o)+r. (26)
0 r I
0 0

Thus, the equilibrium condition of the fluid queue is

p<1l ,d<0and 0<d, <1.

4.2. Expected buffer content

The expected buffer content (C) is expressed as:

E(C)= jl F(x)]dx= j{ ———(1— °)F(x)}dx (27)
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5. Numerical Example and Observations

For k =2, the above equations become
d,r I
F(X)=%+(l—?°)':o(><)

i fli_Gel 4 T
E(C)z_([[l—F(X)]dXz_[{l—T @ r)Fo(x)}jx.

0

R0 =03 Sz, (T 9001 with g9 =S gz o

M1y -1

~"En+D!r ’

A+ 0 n A+u
-5 A -=5)
zo(x):ge r X+Z— Hysnidyan o0

and

g = o—Nu-2)+ru
° A,

To show the variations of the stationary distribution corresponding to the
buffer content and the estimated buffer content for different values of
parameters. Figure 1 illustrates the behavior of the buffer content

distribution F(x)against the buffer size xfor A=1,u=4,k=2 and r, =4,

and different values of r . Figure 2 presents the corresponding behavior of
the expected buffer content against x for the same set of parameter values

k=2.
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Fig. 1 The buffer content distribution, F(x)vs. the buffer size x for different

values ofr .
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Fig. 2 The expected buffer content E(C) against u.
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6. Conclusions

This study investigates a fluid queue model driven by anM™ /M /1queue
with fixed-size batch Poisson arrivals and a single server with exponential
service times distribution. Using power series technique, the steady-state
distribution of the buffer occupancy is obtained in terms of power series As
shown in Figure 1, F(x) is an increasing function provided that the buffer
content, x is increased in the way that the distribution of the buffer content
decreases with r. It is observed that there is a positive mass at x —0 and
F(x) —>1 when x—o. Hence, this means that the buffer occupancy has
mixed distribution. Also, Figure 2 shows the mean of the stationary buffer
content with service rate ». Note that the curves of E(C) increase as the
value of r and udecrease. Finally, some performance measures involving

server utilization and mean buffer content are attained.
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