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Abstract  

A Fluid queue is a mathematical model used to describe fluid level in a 

reservoir subject to randomly determined periods of filling and emptying 

the system without interruption called a buffer, according to a randomly 

varying rate regulated by an external stochastic environment. Such fluid 

queues are used as a mathematical tool for modeling, for example, to 

approximate discrete models, model the spread of wildfires in ruin theory 

and to model high speed data networks, a router, computer networks 

including call admission control, traffic shaping and modeling of TCP and 

production and inventory systems. The fluid from the first phase (i.e, fluid 

output of the [ ] / /1kM M queue) goes to the second phase represents a buffer 

with a constant leak rate c. We always assume that service rate is greater 

than buffer, μ ˃ c.  In this paper, a fluid queue driven by infinite queue with 

fixed –size batch arrivals. The generating function technique is used to 

obtain the expressions for steady-state distribution of both the buffer 

content and stationary state probabilities of background birth-death process. 

Hence, the performance measures are computed whereas the server 

utilization analysis and mean buffer content are investigated. . In addition, 

some numerical results are provided to illustrate the effect of various 

parameters on the distribution of the buffer content. 

 

Keywords: Fluid Queue;  [ ] / /1kM M Queue; Fixed-size Batch Arrivals; 

Buffer Content; Generating Function Method. 

Mathematics Subject Classification (2000): 90B22, 60K25, 68M20, 

44A10. 
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1. Introduction 

Fluid queueing systems with infinite space are considered one of the 

important and useful tools which contribute to modern applications. Indeed, 

several situations arise in which these phenomena occur and need to be 

examined. Traffic shaping, modeling of transport control protocol, 

inventory and production systems are known examples of these systems. 

For more details, see Adan and Resing (1996), Anick et al. (1982), Barbot 

(2002), Kulkarni (1997), and Mitra (1988) and references therein. 

Fluid queues driven by an infinite queueing system have been studied by 

many authors. Closed form expressions in terms of modified Bessel 

functions are obtained by Sherif Ammar (2015) for the model in fluid 

queues driven by an / /1M M   queue. In addition, the spectral expansion is 

used to obtain the distribution of the exact buffer occupancy. In Darwiesh 

et al. ( 2021 ), a fluid queue having an infinite buffer capacity is considered 

for the cases where it is filled and depleted by a fluid at constant rates. The 

simple series form is applied to the joint stationary distribution of the 

buffer occupancy. Parthasarathy and Vijyashree ( 2002 ) gave the solutions 

of a fluid queue fed by an / /1M M  when a general boundary condition is 

assumed. They compared the results with those of the model studied by 

Adan and Resing (1996 ). Mao et al .(2010) investigated a fluid model 

which is driven by a simple queue with single and multiple exponential 

vacations. In this case, a system of first order homogeneous linear 

differential equations is obtained to describe the distribution of the 

trivariate process of external environment and buffer content. This system 

has been solved utilizing the standard spectral method. In order to study the 

buffer occupancy distribution for high-speed networks, the authors in 

Viswanathan et al. (2010) used two independent finite state birth-death 
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processes in a fluid queue model. Furthermore, a plethora of studies has 

discussed the fluid queues driven by birth-death process and including 

vacations and disasters (see for example, Ammar (2014) and Mao et al. 

(2010, 2011, 2012). 

In this paper, the authors analyze a fluid model subject to simple queue 

drive with fixed-size batch arrivals. More specifically, the generating 

function for the system is found for the steady-state distribution of buffer 

occupancy in Section 2. The solution is obtained using the power series in 

Section 3. The performance measures, such as mean buffer content and 

server utilization, are determined in Section 4. Finally, the numerical 

illustrations and conclusions are presented in Sections 5 and 6.  

2. Model Description 

Suppose that there is a fluid model that is driven by a single server 

queueing process with service rates and state-dependent arrival. The model 

is formed from an infinitely large buffer for which the fluid flow is 

regulated via the state of the background queueing process.  Denoting the 

background queuing process by  ( ), 0X t t  which has values in 

 0, 1, 2, ... . In particular, ( )X t  refers to the number of customers in the 

system at time .t  Let j and j denote the mean arrival and service rates, 

respectively, where there are j customers in the queue. The arrivals are 

supposed to be of Poisson fashion whereas the service times are 

exponentially distributed. In addition, the service discipline is supposed to 

be first is first out (FIFO). Denoting by ( ),C t  the content of fluid in the 

buffer at time .t  When the system is in state j, the buffer content changes at 

the net input rate jr r .  Equivalently, it is the input rate minus the output 

rate, that implies that it can take both positive or negative values. For the 
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case where the buffer is empty and the Markov Process is in a state 0 with 

rate 0 0,r   the buffer will still empty. Assume  that 
0 0   and 0,j j    if 

.j   It is clear that the 2-dimensional process  ( ), ( ), 0X t C t t  establishes a 

Markov process with unique stationary distribution under a suitable 

stability condition. 

Therefore, the following differential equation describes the rate of 

change in ( ),C t  

0

0, ( ) 0, ( ) 0
( )

, ( ) 0, ( ) 0,

, ( ) 0.

if C t and X t
dC t

r if C t and X t
dt

r if C t

 


  
 

                       (1) 

The limit distribution for ( )C t exists as ,t  and the stationary net input 

rate must be negative. In other words,  

 
0 0 0 0 0

1

(1 ) 0,
N

j

j

d r r r r   


                      (2) 

and 0 1   ,  
min( , )

1

( )
j k

j j m

m


 






   , 
k




 .  

Therefore 

0( )(1 )d r r r    . 

where ,j j   are the stationary state probabilities associated with the 

background birth-death process. Moreover, assume that the above stability 

conditions are satisfied. 

Assuming that 

 ( , ) Pr ( ) , ( ) ,jF t x X t j C t x   , , 0,j t x                          (3) 

and 
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 ( ) limPr ( ) , ( ) , , 0j
t

F x X t j C t x j x


                    (4) 

The, it can be confirmed that the Kolmogorov forward equations for the 

Markov process  ( ), ( )X t C t are given by 

0 0
0 0 0 1 1

( , ) ( , )
( , ) ( , ),

F t x F t x
r F t x F t x

t x
 

 
   

 
                       (5) 

  1 1

( , ) ( , )
( , ) ( , ), 1,2,... 1

j j

j j j j j

F t x F t x
r F t x F t x j k

t x
    

 
      

                          
(6)

     
 

  1 1 1 1

( , ) ( , )
( , ) ( , ) ( , ), , 1,....

j j

j j j j j j j

F t x F t x
r F t x F t x F t x j k k

t x
      

 
       

 
           (7) 

If the process is in equilibrium state, then 

( , ) 0jF t x t   ,  ( , ) ( ).j jF t x F x  

 Hence, the above system (5-7) can be reduced to the following system:   

0 0 1
0 1

0 0

( )
( ) ( ),

dF x
F x F x

dx r r

 
                            (8) 

  1

1

( )
( ) ( ), 0, 1,2,..., 1

j jj j

j j

dF x
F x F x x j k

dx r r

   




     

                                (9)
 

  1 1

1 1

( )
( ) ( ) ( ), 0, , 1,...

j jj j j

j j j

dF x
F x F x F x x j k k

dx r r r

    

 


      

                 
(10) 

The buffer contents increase for positive net input rate of fluid flow for the 

buffer. The buffer cannot be empty in this case. It follows that the solution 

to (8-10) should be satisfied by the boundary conditions 

(0) 0, { : 0}jF j j r                             (11) 

0 0{ 0} (0) ,Pr C F d   for some constant  0 0(0 1)d d                            (12) 
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The stationary probability of the empty fluid queue is found by: 

0 0

1 0 0 0

0 0 0

(1 )
{ 0} .

j

j

r r
r rd

Pr C
r r r

 
 






 

   


               (13) 

Moreover, the next relations are also satisfied 

 ( ) lim ( ) , .j j j
z

F F x j


                    (14) 

3. Stationary Solution of Fluid Queue driven by [ ] / /1kM M  Queue  

The fluid model studied in previous section is investigated when it has 

the background process as an [ ] / /1kM M queue with fixed–size batch 

arrivals. Let the mean arrival and service rates be j  and j  , 

respectively. 
 

For ( )jF x assume that ( , )H z x  represents the moment generating function, 

ˆ ( , )H z s the Laplace- Stieltjes transform of  ( )jF x  . 

0
0

1

( , ) ( ) ( )n

n

n

r
H z x F x z F x

r





  ,with 
0 0

( ,0)
r d

H z
r

 . 

Multiplying  (9) and (10) by jz  and then summing over all integer values 

of  j  , we get 

 

1

10 0
0

( , ) 1
( ) ( , )

1
(1 ) (1 )(1 ) ( )

k

k

H z x
z z H z x

x r

r r
z z F x

r r r

   








      

 
     

 

                                  (15) 

Now, the solution of (15) is determined as follows  

10 0

1 10
02

0

10
0

0

1 1
( , ) exp ( ) .exp ( )

1 1
(1 ) exp ( )( ).exp ( )( ) ( ) (16)

1 1
(1 )(1 ) exp ( )( ).exp ( )( ) ( )

k

x

k

x

k k

d r
H z x x z z x

r r r

r
z x z z x F d

r r r

r
z x z z x F d

r r r r

   


       


       



 



   

      

       





 



133 

 

The function 11
exp ( )kz z x

r
    is embedded in the generating function 

solution (16). It can be written as  

 

1 ( )1
1

exp ( ) ( ) ( ) (17)
n

k n kk
n

n

z z x z V x
r


  




 



  
   

 

with 
1 1

,
1 1[ ] ( )k k k


   


   ,   

( 1)
( )

0

( )
!( )!

l k n
k

n

l

x
V x

l k n

 








 and 
( 1)

( ) ( )
!( )!

n

l k n
k

n

l

x
V x

l k n

 






 . 

For 0n  the variable n is defined as [ ]n

n

k
   where the notation [ ]

n

k

designates the smallest integer not less than .
n

k  
By substituting from Eq. (17) into Eq. (16) and comparing the 

coefficients of  nz on both sides of Eq. (16) results in  

( )0 0 1

( ) ( )0 1
1 02

0

( ) ( )0 1
0

0

1
( ) exp ( ) ( ) ( )

1
( ) exp ( ) ( ) ( ) ( )

1
(1 )( ) exp ( ) . ( ) ( ) ( ) ( ) , 0

n

kk
n n

n x

k kk
n n

n x

k k kk
n n k

d r
F x x V x

r r

r
V V F x d

rr

r
V V F x d n

r r r


  



  
      

 

  
      

 









  

 
    

 

 
      

 




(18) 

Obtaining Laplace transform of equations (15) and doing some 

simplifications, we get  
 

10 0
0 0 0

1

ˆ(1 ) (1 )(1 ) ( )

ˆ ( , )

( )

k

k

r r
z d r z z F s

r r
H z s

z s z
r r r




   





  
      
  


        .                     (19) 

Noting that the denominator of Eq. (19) is a polynomial of degree 1k   

in z  and hence it has 1k   zeros.  However, the Rouch`s theorem implies 

that only one zero lies within the unit circle ( say 0 ( )z s ). 
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Hence, we get  
 

0 0
0

1 10 0
0 0

ˆ ( )

( ( ) 1) ( 1)(1 ( ))k

d r
F s

r r
z s z s

r r


 



   

                                               (20) 

 

which can be rewritten as  

10
0 00

0

ˆ ( ) ( ) ( )
n

i n i

n
i

d r
F s z s g s



  




                                                               (21) 

 

where  0
0

10

( )
( ) [ ( )]

k
l

l

r r
g s z s

r



 


   

 

By computing the inverse of Eq. (21), it yields that 
 

*( 1) *( )0
0 00

0

( ) [ ( )] * [ ( )]
n

i n i

n
i

d r
F x z x g x



  




                                                  (22)
 

and *0
0

10

( )
( ) [ ( )]

k
l

l

r r
g x z x

r



 


 

 

Here *n denotes the n-fold convolution. 

Now, employing the method proposed by Luchak (1956, 1958) is used to 

calculate the inverse Laplace transform in the way that 
         

  

( 1)
* 1 (1 )

0 0

1

[ ( )] [ ( )]
! ! ( )!

n n k

n

z x L z s e
n nk

 
      

  


  



 
   

 
 , 

where 
x

r


     and  





 . 

Therefore, the closed form expressions for ( )nF x of the two models (18) 

and (22) are obtained analytically. The stationary distribution of the buffer 

content is obtained by: 

( ) limPr( ( ) ) ( )j
t

j o

F x C t x F x






    



135 

 

0 0 0
0( ) (1 ) ( )

d r r
F x F x

r r
  

                                                                     (23) 

In addition, all the joint steady state probabilities are computed explicitly in 

terms of a power series function. 

Remark, the generating function of the fluid queue given with [ ] / /1kM M    

queue in steady state can be obtained from that of fluid queue having 

/ /1kM E queue (via replacing k    by ) in Eq.(15) (with 2k   ), see 

Vijayashree and Anjuka (2016). 

     4. Performance Measures of Fluid Model 

In this section, some crucial performance measures are examined. The 

formulations for these measures are defined as follows:  

4.1. Server Utilization 

The probability that the buffer is non-empty is given by 

Utilization = 0

0

1 (0) 1 (0).j

j

F F




                  (24) 

or  Utilization = 01 d , 00 1d  .               (25) 

where 

( )(1 )
0

0
00

r r rd
d

rr

  
  .                        (26) 

Thus, the equilibrium condition of the fluid queue is 

                  1    , 0d   and 00 1d  . 

4.2. Expected buffer content 

The expected buffer content ( )C  is expressed as: 

  0 0 0
0

0 0

( ) 1 ( ) d 1 (1 ) ( ) .
d r r

E C F x x F x dx
r r

 
 

      
 

                                      (27) 
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5. Numerical Example and Observations 

For 2k  , the  above equations become   

0 0 0
0( ) (1 ) ( )

d r r
F x F x

r r
  

, 

  0 0 0
0

0 0

( ) 1 ( ) d 1 (1 ) ( ) .
d r r

E C F x x F x dx
r r

 
 

      
 

 
 

*( 1) *( )0
0 00

0

( ) [ ( )] * [ ( )]
n

i n i

n
i

d r
F x z x g x



  




    with 
2

*0
0

10

( )
( ) [ ( )] l

l

r r
g x z x

r



 


  ,  

( ) ( )
3 1 3

0

1

( ) ( )
!(2 1)!

n
x x

n nr r
n

n

z x e x e
r n n r

   
  



  




 


 , 

and 

0
0

0

( )( 2 )r r r
d

r

  



  
 . 

To show the variations of the stationary distribution corresponding to the 

buffer content and the estimated buffer content for different values of 

parameters. Figure 1 illustrates the behavior of the buffer content 

distribution ( )F x against the buffer size x for 1  , 4  , 2k   and 0 4r   , 

and different values of r  . Figure 2 presents the corresponding behavior of 

the expected buffer content against   for the same set of parameter values

2k  . 
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Fig. 1 The buffer content distribution, ( )F x vs. the buffer size x  for different 

values of r . 

 

 

 

Fig. 2 The expected buffer content ( )E C  against 𝜇. 
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6. Conclusions 

This study investigates a fluid queue model driven by an [ ] / /1kM M queue 

with fixed-size batch Poisson arrivals and a single server with exponential 

service times distribution. Using power series technique, the steady-state 

distribution of the buffer occupancy is obtained in terms of power series As 

shown in Figure 1, ( )F x  is an increasing function provided that the buffer 

content, x  is increased in the way that the distribution of the buffer content 

decreases with r . It is observed that there is a positive mass at 0x  and 

( ) 1F x   when x . Hence, this means that the buffer occupancy has 

mixed distribution. Also, Figure 2 shows the mean of the stationary buffer 

content with service rate  . Note that the curves of ( )E C  increase as the 

value of r   and  decrease. Finally, some performance measures involving 

server utilization and mean buffer content are attained. 
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Stationary Analysis Fluid Model Driven by an [ ] / /1kM M Queue   

 حمد السيدأكريمة 

 عمال دارة والأكلية الإ -ل عمادارة الأإستاذ مساعد بقسم أ

 ميرة نورة بنت عبد الرحمنالأ ةجامع

 المملكة العربية السعودية 

 جمهورية مصر العربية -زهرالأ ةجامع -كلية التجارة  -حصاء مدرس بقسم الإ

 :الملخص

انتظار السوائل هي نموذج رياضي يستخدم لوصف مستوى السائل في خزان يخضع  صفوف

ن المؤقت ، وفقاً لمعدل والنظام دون انقطاع يسمى المخز تفريغلملء و رات محددة عشوائيلفت

عشوائية خارجية. تسُتخدم طوابير السوائل هذه كأداة رياضية  عمليةمتغير عشوائياً تنظمه 

انتشار حرائق الغابات في نظرية  وذج، على سبيل المثال ، لتقريب النماذج المنفصلة ، ونمجللنموذ

شبكات البيانات عالية السرعة ، وجهاز التوجيه ، وشبكات الكمبيوتر بما في وذج ، ونم لحرائقا

 المخزون السلعيبوذج الخاص النم ذلك التحكم في قبول المكالمات ، وتشكيل حركة المرور و

الانتظار صفج السائل لووأنظمة الإنتاج والجرد. يمثل السائل من المرحلة الأولى )أي خر

[ ] / /1kM Mنفترض دائمًا أن معدل  ( إلى المرحلة الثانية مخزناً مؤقتاً بمعدل تسرب ثابت .

المولدة نتظار مائعة لاا صفوففي هذا البحث ، (.   .μ ˃ c) الخدمة أكبر من المخزن المؤقت

بطابور لانهائي مع وصول دفعة ذات حجم ثابت. يتم استخدام تقنية وظيفة التوليد للحصول على 

لعملية  حالة الاتزانن المؤقت واحتمالات والمخز كميةتوزيع الحالة المستقرة لكل من تعبيرات ل

تحليل  منالتحقيق  وكذلك يمكن. ومن ثم ، يتم حساب مقاييس الأداء المعروفةالولادة والوفاة 

بعض  تم الحصول علىاستخدام الخام ومتوسط محتوى المخزن المؤقت. . بالإضافة إلى ذلك ، 

و كمية  عددية لتوضيح تأثير المعلمات المختلفة على توزيع محتوى المخزن المؤقتالنتائج ال

 .المخزون المتوقعة

] السائل )لطابورانموذج  الكلمات المفتاحية: ] / /1kM M ueueQFluid  ) عملية ؛ 

 Generating اسلوب الدالة المولدة ؛ كمية المخزون؛ دفعات ثابتة  فيالوصول 

Function Method. 


