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Abstract

Recently the joint progressive type Il censoring scheme is useful for
planning comparative purposes of two identical products manufactured
coming from different lines. In this paper, we consider the life time Burr
type XII distribution with jointly progressive type-1l censoring scheme.
The maximum likelihood estimators of the parameters and Bayes
estimators have been developed using Markov chain Monte Carlo by
utilizing Metropolis-Hasting algorithm under squared error and linear-
exponential loss functions. In Bayesian approach the Markov chain
Monte Carlo method is adopted to compute estimates. Moreover, we
obtain both approximate and Highest posterior density credible intervals.
Monte Carlo results from simulation studies have been presented to
assess the performance of our proposed methods. Finally a real data set

has been analyzed for illustrative purposes.
Keywords: Burr type Xlldistribution; Joint progressive type-11 censoring;

Maximum likelihood estimation; Confidence intervals; Bayesian

estimation; Loss function; Markov chain Monte Carlo.
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1. Introduction

The two parameter Burr type XII distribution (denoted by Burr XII
distribution) was introduced as a member of the Burr (1942) family of
distributions which includes 12 types of cumulative distribution functions
with a variety of density shapes. Among those 12 distributions functions,
Burr Type XII distribution has received the most attention in the
statistical literature. This distribution plays major role in the analyses of
lifetime and survival data. Due to its flexibility and some desirable
properties, applications have proved to be much wide. Applications may
be found in areas of quality control, economics, duration of failure time

modeling, insurance risk and reliability analysis.

A random variable X is said to have Burr XII (3, ) distribution, if its
probability density function is given by
f (x)=RNX ‘“‘1(1+x‘“)_(x+l), X >0,%N>0
and a cumulative distribution function

F(x):l—(1+x€“)_x, x >0(1)

whereR and N are the shape parameters of the distribution. Statistical

inference based on Burr XII(:,x) distribution as a lifetime model has

been discussed by several authors, see for example, Papadopoulos (1978),
Al-Hussaini and Jaheen (1992), Ali Mousa and Jaheen (2002), Jaheen
(2005) , Soliman et al. (2013), Jang et al. (2014), Gunasekera (2018) ,
Panahi (2019), Ateya et al. (2020),Parviz and Panahi (2020) and Yan et
al. (2021).
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Censoring schemes are used to reduce the costs of experiments and
to accelerate design performance. There are various types of censored
data to be dealt with in the analysis of lifetime experiments (see
Lawless(2003)). Almost all of these types of data are concerned with the
one-sample problems. However, there are situations in which the
experimenter plans to compare different populations. In such problems,
the joint censoring scheme is scheme is quite useful in while conducting
comparative life tests of products from different units within the same
facility. More clearly for joint censoring scheme, suppose that products
are being produced by two different lines under the same facility, and that
two independent samples of sizes m and n are selected from these lines
and placed simultaneously on a life-testing experiment. In order to save
time and money, suppose the experimenter chooses to terminate the life-
testing experiment when a certain number of failures occur (say,r).
Under joint Type-Il censoring, specimens of two products under study are
placed on a life-test simultaneously, successive failure times and the
corresponding product types will be recorded, and the life-testing
experiment will get terminated as soon as a pre-specified number of
failures (say,r) are observed. Balakrishnan and Rasouli (2008) studied
the exact likelihood inference for two exponential populations under joint
Type-11 censoring. If an experimenter desires to remove live units at
points other than the termination point of the life test, the above described
scheme will not be of use to the experimenter. The joint Type-lII
censoring does not allow for units to be lost or removed from the test at
points other than the final termination point. So, more general censoring

schemes are required.
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Rasouli and Balakrishnan (2010) introduced joint progressive type-I|

censoring (JPC-II) as follows:

Suppose X ,,...,X ., the lifetimes of m specimens of product 1, and

are (iid) random variables from a population with distribution function

F.(x)and density functionf,(x), and Y,..Y, the lifetimes of n

specimens of product 2 , and are (iid) random variables from a population
with distribution function F,(x) and density function f,(x). All
N =m +n items are put to life testing at time zero and the experiment is

terminated as soon as r failures, either from product 1 or from product 2,
are observed. To run the experiment according to a joint progressive Type

Il censoring scheme, the following algorithm is used:

(1) At the time of the first failure (that may be from either X ory ), R,
units are randomly withdrawn from the remaining N —1 surviving

units.
(2) Similarly, at the time of the second failure (which may be from either

X or Y), R, units are randomly withdrawn from the remaining

N —R, -2 surviving units and so on.

(3)Finally, Whenthe r"failure is observed, all the remaining
R, =N -r-R,-R,—...—R, ;surviving units are withdrawn from the life-
testing experiment.

Here, The progressive type-11 censoring scheme R =(R,,R,,...,R,)
has the decompositionS +Q =(s,,...,S,)+ (d;,---,q,), wWhere R=S+Q,

S (Q)is the number of units withdrawn at the time of the i" failure that
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belongs to X (Y )sample and these are unknown and random variables.

Thus, The available data consist of (9,RW )where W =(W(1),...,W(r))
with r <N being a prefixed integer, $=(4,...,4 )with 4 =1 or O if W) IS

from X —ory —failure respectively. The likelihood of (9, W, and S) is
given by

L=C« H(fl(""(w))a (fZ(WU)))”I (F_l(wm))Si (';(Wm))% ()

Where  F=1-F ,Zr:si Jrzr:qi =Zr:Ri ,Zr:si =m—mr,zr:qi =n-n,  and
i=1 i=1 i=1 i=1 i=1

¢, =D, D,, such that
Dl:ﬁ[(m —jzlszi $ }91. +(n S-9)-SR -s,) J(l—sj )}
j-1 1 i1 1

-1
i=1 i= i =

and

j-1 j-1 j-1 j-1
m->9->s || n->.1-9)-D (R, -s))
i=1 i=1 i=1 i=1
r-1 S. q
DZ:H : = J
= m+n—j - >R,
i=1
R

j

Several authors have addressed inferential issues based on JPC-II
samples; for example: Rasouli and Balakrishnan (2010) discussed exact
likelihood inference for the parameters of two exponential populations
when JPC-I1 is implemented on the two samples. They developed exact
inferential methods based on maximum likelihood estimators (MLEs) and
compared their performance with those based on approximate, Bayesian

and bootstrap methods, under JPC-Il scheme assuming exponential for
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both samples. Parsi et al. (2011) developed inference of the parameters of
two Weibull populations under JPC-II, presented the details of the
proposed model and derives the MLEs of the model parameters.
Doostparast et al. (2013) considered the Bayesian inference for the
unknown parameters of two Weibull populations under JPC-1I by using
squared error(SE) and linear-exponential(LINEX) loss function. Torabi
et.al (2015) discussed general JPC-11 censoring scheme and inference for
parameters of two weibull populations under this scheme. They obtained
the MLEs and confidence interval using procedures such as asymptotic
normality and bootstrap methods, under the scheme. Finally, by means a
simulation study these estimations are evaluated and also all confidence
intervals are compared in terms of coverage probabilities. Abo-Kasem
(2020) discussed statistical inferences for two Rayleigh populations based
on JPC-II censoring scheme. Heobtained the MLEs of the unknown
parameters when it exists, Bayes estimators for the unknown parameters
using SE and LINEX loss functions and both approximate and Bayes
credible confidence intervals. The theoretical results of point and interval
estimation obtained are assessment and compared through illustrative
example and simulation studies. Mondal and Kundu (2020) considered
the JPC-11 scheme for two populations when the lifetime distributions of
the experimental units of the two populations follow two-parameter
generalized exponential distributions with the same scale parameter but
different shape parameters. Krishna and Goal (2020) dealed with
inferences for Lindley populations, when JPC-II censoring scheme is
applied on two samples in a joint manner. They obtained the MLEs of

parameters along with their associated confidence intervals which
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dependent on Fisher’s information matrix and Bayes estimators of
parameters are considered. A Monte Carlo simulation study is performed
to measure the efficiency of the estimates also a real data set is given for
illustrative purpose. Aljohani (2021) discussed statistical inference of
Chen Distribution populations under JPC-II censoring. He obtained the
MLEs and Bayes estimators of the unknown parameters. The theoretical
results are obtained through simulation studies and verified in an analysis
of the lifetime data.

The rest of this paper is organized as follows. In Section 2, the
MLEs and asymptotic confidence intervals are obtained. In Section 3, the
Bayes estimators under squared error (SE) and linear-exponential
(LINEX) loss functions and HPD intervals for the parameters using JPC-
Il scheme are derived. In Section 4, the theoretical results of point and
interval estimation compared through illustrative example and simulation
studies are given. In Section 5, a real data analysis is presented. Finally

conclusion is given in Section 6.

2.Maximum Likelihood Estimation
Let the two populations are Burr type XII distribution with equation

(1).In this case, the likelihood function in (2) becomes

L=c]] Kmlxlw o Lew )(M) )3' (‘RZNZW N Sl )(M) j”' }
i=1
(o)) (o) T @

Taking natural logarithm of L gives:
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INL =In(C RN Ry R )+ (R, —1)29% Inw - (%, +1)Zr119i In (1+vv (”f;)
i= i=1

(9, -D) Y19 )Iw ) ~(8, +1) Y (14 )In(1ew )

i=1 i=1

-N Zs In(1+w J‘1) N Zq, In(1+w Rz)(4)

The point estimation for R, and ¥, (h=12)can be obtained by

finding the first derivatives of the natural logarithm of the likelihood

function (4) with respect to R, and N, and equating the new equations to

zero, so we get the following equations

r . r J‘1Inw Rllnw
e e ~(Se TR R T
n, . r RZI “Zlnw
R <i>‘(“2”)§(1“9i)m XY s

In(1+w ) Zs In(1+w(§) 0,

1

and
b > (a8 )in(Liw ) - Zq in(L+w ) =0(5)

2 1

By solving equations (5) we obtain the MLEs of the parameters R,,N,,R,

andy,, it’s clear that, the analytical solution may be very difficult to find.

So, we use a numerical methods to obtain %,,N,,%,andX,

The asymptotic variance-covariance matrix for R, N,,R,and¥, is

obtained by inverting the information matrix through the elements that

are negative of the expected values of the second order derivatives of the
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logarithms of likelihood functions. The elements of the sample

information matrix will be

aZInL_m ow s Inw g+ ( M) ) '”Wo ( ?3)2'”W(i>

)
N, l &4

+ler:s. w g Inw —I—(W (?3)2 Inw —(W 0 )2 Inw |

i % 2
- (Lows)
. . 2
&InL n, ‘ wé‘; Inw ; +(w %) Inw ;) — w("fi Inw
- 2 2 (N +1)Z(1_‘9i) ( ) 2 ( )
R, iRz i=1 (1+W i) )
" W Inw )+ (w (RZ) Inw ) (w5 ) Inw
i 2 !
N (14w i)
o°’InL  m
oN?  N?
o’InL _n,
oNz N2
InL Zr: wsinw o s-W(% Inw
ORON, 3 (l+w(i)) = (l+w(“i‘3)'
and
oL _Y Wi W) G W I
- “S1-9) Oy O Og
OR,0N, i—l( ) (1+W(’f§) iz—l:q' (1+W(’f§) ©)
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Suppose that & is the MLE of the parameter vector &=(R,,N,,R,,N,)

.Under some regularity conditions, 5 is approximately normal with mean

s and covariance matrix 1*. Practically, we estimate 1 ;* byl , then

_2*InL 0 _2%InL 0
OR? OR,0N,
0 _&°InL 0 ~ 2°InL
i R OR,0N,
° | &InL 0 _%InL 0
OR,0N, ON?
_&InL 9 _o*InL
] OR,0N, oNo |,
[ var( Al) 0 cov(if%l,&l) 0 |
0 var( y 2) 0 cov(if%z,&z)
} cov( Al,&l) 0 var( Al) 0
0 cov(if%z,&z) 0 var(&z) |

Now, the approximate confidence intervals of R, and N, ,h=12with

confidence level 100(1- )% are given by

R, J_rz(l_a/z),/var(if%h ) andy, £z, ., var(&h) h=12.

| denotes the upper (1-«/2) percentage point of the standard

Where z, ,,
normal distribution.
3. Bayesian Estimation

In this section, the Bayes estimators using SE and LINEX loss

functions under the assumption of gamma prior for the unknown
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parameters®R, and N, will be obtained. We consider that R,,N,,%R,and

N, have the following independent gamma prior distributions;
by
h

ﬂ(g{h)ocr(bh)

R ™™ a b R >0,

and

by
h
r'(by)

Here all the hyper parameters a, and b, are assumed to be known and

(N, ) o Mot g b N, >0 ,h=12(7)

non-negative.Combining (7) with equation (3) and using Bayes theorem,

the joint posterior density function of R,,N,,%,andX, can be written as:

m(RLNLR,N, |X)oc$L 7(R,) 7 (X)) (8)
Where szT

|

Therefore, the Bayes estimator of any function of R,,N,,R,andX,,

L 7(R,) (N, )dR,dN, ,h=1,2.
0

say 5(R,,N,,R,,N, )under the SE loss function is

o= E‘J?l,Nl,sz,Nz/x (5(5}{11N115R21N2))

LT TTT000M IR () 7(8, )dR,dN, ()

ﬁllﬂ

Under a LINEX loss function the Bayes estimate of a function
S(R,NLR,,N,) is given by

5 =—LinE (), =#0,(10)

T
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WhereE = ﬁﬁe L z2(R,) (R, )dR AN, ,h=12.
0000

1
14
Equations (6), (7), (9) and (10) are hard to obtain, so Markov chain

Monte Carlo (MCMC) approach can be suggested as an approximation of

the Bayes estimates of ®,N,,%,,N, and generating a posterior sampling

using Metropolis-Hasting(MH) algorithm.
Metropolis-Hasting Algorithm

Suppose our goal is to draw samples from the posterior density (8),
therefore the MH generates a sequence of draws. To perform the MH
algorithm for Burr type XII distribution, we have to start with simulating

a candidate sample 5'from the proposal distributionc (5). Samples from

the proposal distribution are not accepted automatically as posterior
samples, these candidate samples are accepted probabilistically based on
the acceptance probability. more clearly for the steps of MH algorithm to

draw a sample, follow the following steps:

Step 1.Set i =1.

Step 2. Start with any initial value s

Step 3. Using the initial value, sample a candidate point §'from proposal

distribution [J (5).

Step 4. Given the candidate point &', Calculate the acceptance probability

B = min[l,%}
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where z(.) is the posterior density in (8).
Step 5. Draw a value of u from the uniform distribution U (0,1).
Step 6. Accept or reject the new candidate &'

lfu<B set & =¢
otherwise set &0 =50

Step 7.Set i =i +1, and repeat steps 2-7 M times until we get M draws.

Finally, from the random samples of size M drawn from the posterior
density, some of the initial samples can be discarded (burn-in), and
remaining samples can be further carried out to calculate Bayes estimates.

More accurately (9) can be estimated as
~ 1 M
5= st

VS

whereM is the sample size drawn from the posterior density and I,

represent the number of burn-in samples (Dey and Pradhan (2014)).

Highest Posterior Density Intervals

The technique of Chen and Shao (1999) has been broadly utilized
for constructing highest posterior density (HPD) intervals for & of Burr
type XII distribution under JPC-I11. In this sub-section, the samples drawn
using the proposed MH algorithm shall be employed to construct the

interval estimates. More accurately, let us assume that [1(5|x ) denotes the

posterior distribution function of &. Let us further suppose that 5 be
the " quantile of &, that is,
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5@ =inf(5:H(5|x)2a)

where 0<a <1,inf IS meaning infinimum. Notice that for a given s°, a

simulation consistent estimator of H(a’

x) can be estimated as

M

(o) =D,

_Ib i=ly

Where M is the sample size drawn from the posterior density, I, represent

the number of burn-in samples and 1 __. is the indicator function defined

| 1 if o0<o°
<" o otherwise

Then the corresponding estimate is obtained as

as

0 if 6°<d

(s x)=1 Yo i 84y <8" < )

1 if 5" <)

Where o, :Ml and¢; are the ordered values of s,. Now, for
b

i =1,,...,M, 8 can be approximated by

Now, a 100(1-«)% HPD credible interval for 5 ,let
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HPD, _{gm, g[“ﬂfWJ]

for j=1,,..(aM ). Then choose HPD .among all the HPD{ssuch that it

has the smallest width (see Chen and Shao (1999)).

4. Simulation results

The simulation study is conducted by considering different values of
sample sizes for the two populations as m = 30,50,60 and n = 30,50,60 ,
different choices of joint progressive type-11 censoring schemes with r =
24,36,48,40,60,80,48,72,96  for example, and by choosing
(RN, R,,N,)=(1.5,05,2,0.75). For all these cases, the MLEs, root mean
squared errors MSE and the 95% simultaneous confidence intervals for

(RN, R,,N,) and the corresponding coverage probabilities are
computed. The Bayesian estimates of (%,,N,,%%,,N,) under the SE and

Linex loss functions are also computed based on 1000 simulations and

compute the average values of all the estimates. The average value of the
MLEs (if%l,&l,if%z,&z) and(«/MSE ) are summarized in Table 1. In Table 2
the coverage probabilities and the average widths of 95% Cls of
(RN, R,,N,)for approximate confidence intervals are presented for

some small, moderate and large values of m, n and r .Bayesian estimates

of (R,,N,,R,,N,)for different choices of m, nandr are presented in

Table 3, and HPD credible intervals of (R,,8,,%,,N,)in Table 4.
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Table 1 : The average values of the MLEs of (%,,N,,%,,N,) and

(\/MSE ) for small, moderate and large values of m, nand r

m,n A A A ¢

(m,n) -~ Scheme (R) ¢, YMSE o JMSE ¢ JMSE N, JMSE
oy (490(15) 1639 0928 0355 0612 1879 0794 0132  1.627
(0(15),4(9)) 2249 1168 1514 1170 2.323 0.676 0599 0.362
(3(8),0(28))  1.663 0563 0484 0164 2161 0556 0.639 0.184

30,30) 36
(3030) (0(28),3(8))  2.080 0.819 1519 1136 2153 0533 0483 0.289
;g (6(0(46) 1682 0668 0502 0152 2159 0492 0755 0.187
(0(46),6(2)) 1996 0720 00928 0499 1.897 0.427 0.493 0.279
40 (10(6),0(34)) 1734 0.673 0459 0.164 2229 0551 0631 0.195
(0(34),10(6)) 1931 0649 1289 0842 2.128 0439 0514 0.259
o5y o C®0(G2) 1639 039 0486 0122 2200 0437 0689 0152
(50,50) (0(52),5(8)) 1978 0384 1464 1022 1.899 0.083 0475 0.082
(1(20),0(60) 1558 0.295 0.494 0.105 2072 0356 0682 0.130

80
(0(60),1(20)) 1.766  0.421 0.823 0.365 2.076 0.324 0.567 0.207
;g O®0(0) 1846 0412 0464 0141 2201 0435 0622 0189
(0(40),98)) 1929 0628 1318 0864 2.121 0.386 0522 0.249
6060) 72 (8(6),0(66)) 1.636 0389 0482 0114 2.148 0.377 0.722 0.138
’ (0(66),8(6))  2.094 0708 1599 1147 1.943 0.288 0.444 0.313
96 (12(2),094)) 1595 0324 0496 0101 2.089 0.318 0.752 0.130
(0(94),12(2)) 1.899 0254 00939 0225 1797 0.112 0485 0.075
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Table 2 : Simulated coverage probabilities (CP) and the average

widths of the 95% confidence intervals for(%,,N, R,,N,)for some

small, moderate and large values of m, nand r

(m,n)

(30,30)

(50,50)

(60,60)

T

24

36

48

40

60

80

48

72

96

A

~

Scheme (R) R, N, R, N,
Length CP% Length CP% Length CP% Length CP%
(4(9),0(15))  3.439 9638 1522 100.00 3.077 95.47 3.082 100.00
(0(15),4(9)) 3517 9599 2294 9609 2330 9529 L1245 9849
(3(8),0(28)) 2115 9599 0644 9569 2084 9569 0577  96.09
(0(28),3(8)) 2269 96.00 1.973 9640 2004 9610 0439 96.90
(6(2),0(46)) 2519 9820 0.6005 9630 1.827 9550 0.729  96.10
(0(46),6(2)) 2.051 9580 1.016 9620 1621 9610 0416 96.50
(10(6)0(34)) 2476 9630 0619 9640 1968 9640 000 9610
(0(34),10(6)) 1902 9530 1149 9650 1648 9620 OH8 9630
(5®).002) 1454 9470 0478 9570 1503 9630 O 9590
(0(2)58)) 1777 96192 1413 96593 1207 9599 0296 97.194
(1(20),0(60)  1.134 9550 0411 9720 1369 9630 0430 96.70
(0(60),1(20)) 1.279 9560 0663 96.80 1.235 96.60 092 9660
(9(8).0(40)) 1514 9600 0543 9570 1515 9570 Ooo0 9630
(0(40),98)) 1796 9570 1083 9660 1438 9600 094 9720
(8(6).0(66)) 1435 9550 0443 9630 1359 9630 O 9630
(0(66),8(6)) 1509 9620 1.293 9580 1.109 9590 0259  96.50
(12(2),0(94)) 1217 9560 0394 9720 1.196 9590 0512 96.80
(0(94),12(2)) 1207 96.60 0708 96.20 1.044 96.00 0277 97.40
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Table 3 : Bayesian estimates of (%,,X,,%,,,)for different choices of

m, nand r
(mm r  Scheme (R) SE Loss LINEX Loss
(49)0(15)) 1449 0444 1701 0448 1278 0425 L1499 0434
“ (0(15),4(9))  1.850 1.228 2.065 0592 1627 1079 1839 0566
5 (GB0@8) 1557 0501 1967 0679 1405 0477 1793 0639
030 (0(28)3(8) 1886 1378 1962 0504 1722 1254 1812 0492
o (G066 1557 0519 1995 0787 1444 0502 1857 0.754
(0(46)6(2))  1.864 0916 1758 0524 1727 0869 1651 0.510
5o (00)0(E4) 1594 0461 2057 0653 1499 0.449 1.928 0624
(034)10(6)) 1745 1166 1975 0516 1615 1086 —o>> 030
(50,50) (5@)0(2) 1578 0492 2086 0708 1495 0.481 L1979 0.689
¥ O625E) 1978 1464 18% 0475 1gee 1sg0 1L 0469
(1(20),0(60) 1511 0505 1.979 0701 1.444 0.495 1894 0.686
80
(0(60)1(20)) 1712 0822 1987 0584 1635 0798 1907 057
(98)0(40)) 1571 0.466 2066 0635 1480 0455 —9°t 0617
(60,60) " (040)9(8)) 1774 1208 1994 0523 1662 1136 oot 0513
(8(6)0(66) 1582 0489 2052 0736 1512 0479 1904 0719
; (0(66)8(6) 2001 1519 1863 0456 1907 1443 /0> 041
9 (12(2).0(94)) 1573 0505 2013 0769 1492 0496 1.937 0.753
(0(94)12(2)) 1847 0933 1732 0503 1779 0909 1.678 0.497
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Table 4 :HPD credible intervals of (R,,N,,R,,N, ) for different choices

of m, nand r

(m,n)

24

(30,30) 36

48

40

(50,50)

60

80

48
(60,60)

72

96

Scheme (R)

(4(9),0(15))
(0(15),4(9))
(3(8),0(28))
(0(28),3(8))
(6(2),0(46))
(0(46),6(2))

(10(6),0(34))

(0(34),10(6))
(5(8),0(52)

(0(52),5(8))
(1(20),0(60)
(0(60),1(20))
(9(8),0(40))
(0(40),9(8))
(8(6),0(66))

(0(66),8(6))

(12(2),0(94)) 1.044

(0(94),12(2))

HPD Interval
R, N R, N,

Length CP% Length CP% Length CP% Length CP%
1.359 96.898 0.571 96.526 1.580 96.484 0.358 96.199
2009 96.076 1.286 96.593 1.629 96.589 0.559 96.092
1.313 96.053 0.580 96.396 1.409 95.647 0515 96.891
1.614 96.084 1332 96.894 1341 96.493 0.395 97.297
1.275 96.281 0519 96.10 1.329 95573 0.616 97.295
1496 95591 0.877 96.600 1.125 96.997 0.377 96.600
1431 95959 0.556 95.996 1420 96.375 0519 97.097
1505 9570 0.858 96.60 1.279 96.40 0.358 95.80
1.228 96.80 0459 98.000 1.229 97.10 0.482 97.000
1435 95591 1142 9799 1.017 95.79 0301 96.794
0974 9690 0383 97.70 1.111 96.30 0.409 97.80
1122 96.70 0.612 97.70 1.043 96.60 0.369 96.60
1.193 95696 0521 96.20 1236 96.20 0.480 97.50
1452 9560 0.833 9640 1.155 96.90 0.327 96.10
1.185 95596 0432 9860 1.082 9649 0478 96.30
1.303 96.80 1.097 9640 0935 96.70 0.252 96.20
96.30 0.364 9690 1.018 95.60 0.464 96.50

0983 9620 0.661 97.60 0.830 96.20 0.269  98.80
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The results presented in Table 1 show that the bias of the MLEs is
affected by the form of JPC-II employed. From the results presented in
Tables 1 and 3, it is clear that the estimates based on the SE and LINEX
loss functions yield better results than those of the MLEs. In addition, we
observe that for larger number of m,nandr, the MLEs and Bayesian
estimators yield better results than when m,nandr are small. From the
results presented in Tables 2 and 4, we observe that HPD credible
intervals are with shorter width than those based on approximate intervals
and for both two interval estimates, when r becomes large, the coverage
probabilities rarely improve and get close to the nominal value with
shorter width of it when sample sizes m and n are large.

5. Real data analysis

A real data set is analyzed for illustrative purpose as well as to
assess the statistical performances of the MLEs and Bayes estimators for
the Burr XII distribution under different JPC-11 schemes.

The following original data set which provided by Wingo (1993)
generated from a clinical trial describing a relief time (in hours) for 30
arthritic patients

0.70, 0.58, 0.54, 0.59, 0.71, 0.55, 0.63, 0.84, 0.49, 0.87, 0.73, 0.72, 0.62,
0.82, 0.84, 0.29, 0.51, 0.61, 0.57, 0.29, 0.36, 0.46, 0.68, 0.34, 0.44, 0.75,
0.39, 0.41, 0.46, 0.66

To illustrate the usefulness of the proposed estimators obtained in
Sections 2 and 3 with real situations, we divided the data into two
samples by randomly sampling (m = 15) observations and considering
these observations as the X sample, and the remaining (n = 15)

observations are taken as the Y sample, see Table (5).
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Table (5): failure times of ..

Data: X
0.36, 0.57, 0.29, 0.36, 0.58, 0.58, 0.72, 0.46, 0.72, 0.68,
0.84, 0.87, 0.63, 0.59, 0.54

Data: Y
0.70,0.71, 0.55, 0.49, 0.73, 0.62, 0.82, 0.51, 0.61, 0.34,
0.44, 0.75, 0.39, 0.41, 0.66

Then, we fit Burr XII distribution to each sample and report the results in
Table (6). We provided the Kolmogorov-Smirnov test statistic values (K-
S) and the corresponding p-values, saying that the data fit the Burr XIlI

distribution with the parameters given in Table (6).

Table (6): MLEs and Kolmogorov-Smirnov test results for data

Data R, R, R, R, K-S p-value
X 4.6780 8.1718 0.1339 0.9507
Y 4.9079 9.7225 0.1225 0.9573

Form Table (6), the calculated Kolmogorov-Smirnov (K-S) distance
between the empirical and the fitted extended for the Burr XIlli
distribution for the first population (X) is 0.1339 and its p-value is 0.9507
where R, =4.6780 and &, =8.1718, and for the second population (Y) is

0.1225 and its p-value is 0.9573 where %, =4.9079and §, =9.7225which

indicate that this distribution can be considered as an adequate model for

the given two data set (X and Y).

From the original data, one can generate, e.g., two JPC-IlI samples

with number of stages = 12 and removed items R; are assumed as:
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e Scheme I:R;=R,=+--=R;;=1, Ri,=7. This is can be
written as: (1", 7)

e Scheme Il:Ry =7, R, =R;=--=Ry, =1. This is can be
written as: (7,111)

In Table (7), the MLEs of the parameters %,,%N,,%,and X, have been

calculated at proposed schemes JPC-11 samples where two population of

failures (X and Y) as in the given real data set and follows Burr Xl

distribution.

Also, Bayes estimates was computed by utilizing the MH algorithm
under the Non-informative prior for SE and LINEX loss functions with

initial value ofr=2andr=-2.

It is indicated that, while generating samples from the posterior
distribution utilizing the MH algorithm, initial values of %,,8,,%,and X,
are considered as the MLEs of these parameters. Finally, discarded 2000
burn-in samples among the total 10000 samples created from the
posterior density, and subsequently obtained Bayes estimates under two
error loss functions (SE and LINEX).

Finally in Table (8), associated asymptotic confidence interval

estimates and HPD credible interval are computed.
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Table (7): MLE, Bayesian, and standard errors for real data set
based on joint progressive Type-11 censoring under various censoring
schemes

Bayes LINEX
MLE Bayes SE
Scheme Parm. =2 T=-2

Estimate St.E Estimate StE  Estimate St.E Estimate St.E

R, 43495 1.2973 3.1072 0.0085 2.6485 0.0088 3.0197  0.0057

N, 243194 249542 9.2444 0.0895 2.9225 0.1056 7.4112  0.0589

I R, 55855 14906 3.7836 0.0114 3.1468 0.0120 4.4139  0.0094
N

© 220024 235686 7.2930 00923 22814 0.1323 127756 0.1366

R, 44796 12891 3.5848 0.0116 2.8314 0.0121 3.5993 0.0121

N, 15.3353 13.2796 9.2436 0.1009 2.7270 0.1026 11.1457 0.134

I R, 38771 11596 29403 0.0110 2.2367 0.0111 3.3374 0.0124
N

2 3.0513 1.8515 15678 0.0109 1.0551 0.0134 3.4366 0.0356

Parm.-Parameter, St.E-Standard error.

Table (8): Associated interval estimates for MLE and HPD credible
interval for real data set based on joint progressive Type-Il censoring
under various censoring schemes

Cl Scheme Cl forj, Cl for®, Cl for¥, Cl for¥,
Approximate I (3.5454, (8.8529, (4.6616, (8.2947,
5.1536) 39.7860) 6.5094) 37.5101)
I (3.64609, (5.2524, (4.8685, (7.8966,
5.1385) 14.1441) 6.6870) 26.0476)
HPD I (1.8140, (1.05009, (2.2237, (0.8330,
4.5663) 26.0569) 5.8287) 23.9039)
] (1.7363, (0.7071, (4.9686, (3.4988, 3.3774)
5.8197) 25.7789) 3.9177)

Asy CI- Asymptotic confidence interval.
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6. Conclusions

The object of this paper is to discuss different estimation problems
as MLE and Bayes estimation of unknown parameters for two Burr type
XIl populations under JPC-II samples. The MLEs of the parameters,
corresponding Fisher information matrix and associated asymptotic
confidence interval estimates have been derived. Also, Bayes estimates
and associated HPD credible interval have been investigated using MH-
algorithm under SE and LINEX loss functions. Finally real data set has
been analyzed Wingo (1993) and a simulated study has been conducted to
compare the performance of the various proposed estimators. From these
results, when the sample sizes of two populations m ,n and the total
number of failures rare large, the estimators’ biases are small and the
confidence intervals have desirable coverage probabilities. Also, it is
noted that when r increases, the bias of the MLEs becomes negligible and
the confidence length decreases. It can be seen that the coverage
probabilities based on the HPD credible intervals better than the

approximate confidence intervals.

166



References

Abo-Kasem 0.E.(2020). Statistical inferences for two Rayligh populations
based on joint progressive Type-Il censoring scheme. International Journal
of Research and Reviews in Applied Sciences, 42(1), 15-23.

AL-Hussaini E.K. Jaheen Z.F. (1992). Bayesian estimation of the
parameters, reliability and failure rate functions of the Burr type XII failure
model. Journal of Statistical Computation and Simulation, 41, 31-40.
AljohaniH.M.(2021). Statistical Inference of Chen Distribution Based on
Two Progressive Type-lIl Censoring Schemes. Computers, Materials&
Continua, 66(3),2797-2814.

Ali Mousa M.A.M., Jaheen Z.F. (2002). Statistical inference for the Burr
model based on progressively censored data. Computers & Mathematics
with Applications 43, 1441-1449.

Ateya S.F. Amein M.M. Mohamed H.S (2020). Prediction under an adaptive
progressive type-Il censoring scheme for Burr Type-XII distribution,
Communications in Statistics-Theory and Methods,
DOI: 10.1080/03610926.2020.1808685.

Balakrishnan N. and Rasouli A. (2008). Exact likelihood inference for two

exponential populations under joint Type-ll censoring. Computational
Statistics& Data Analysis. 52(5), 2725 — 2738.

Burr, LW. (1942). Cumulative frequency distribution, Annals of
Mathematical Statistics, 13, 215-232

Chen, M.H. and Shao, Q.M. (1999).Monte Carlo estimation of Bayesian
credible and HPD intervals. Journal of Computational and Graphical
Statistics, 8, 6992,69-92.

Dey, S. and Pradhan, B. (2014).Generalized inverted exponential
distribution under hybrid censoring. Statistical Methodology, 18,101-114.

167


https://doi.org/10.1080/03610926.2020.1808685

Doostparast, M., Ahmadi, M., Vali and Ahmadi, J.(2013).Bayes estimation
based on joint progressive Type-ll censored data under LINEX loss
function. Communications in Statistics -Simulation and Computation,42(8),
1865-1886.

Gunasekera S (2018). Inference for the Burr XII reliability under
progressive censoring with random removals. Mathematics and Computers
in Simulation,144,182-195.

Krishna.H and Rajni.G (2020) .Inferences for two Lindley populations
based on joint progressive type-lIl censored data, Communications in
Statistics - Simulation and Computation,
DOI: 10.1080/03610918.2020.1751851

Jaheen, Z. F. (2005), Estimation based on generalized order statistics from

the Burr model, Communication in Statistics —Theory and Methods, 34, 785
—794.

Jang, D. O., Jung, M., Park, J. H. and Kim, C. (2014). Bayesian estimation
of Burr TypeXIl distribution based on general progressive Type-II
censoring. Applied Mathematical Sciences, 8 (69), 3435 - 3448.

Lawless, J. F. (2003).Statistical Models and Methods for Life Time Data. 2"
Edition, John Wiley, New York.

Mondal S. and Kundu D. (2020).0n the joint type-1l Progressive censoring
scheme. Communications in Statistics — Theory and Methods,49(4),958-
976.

Panahi, H .(2019).Estimation for the parameters of the Burr Type XIlI
distribution under doubly censored sample with application to microfluidics
data. International Journal of System Assurance Engineering and
Management,(10), 510-518.

168


https://doi.org/10.1080/03610918.2020.1751851

Papadopoulos, A.S. (1978).The Burr distribution as a life time model froma
Bayesian approach. IEEE Trans. Rel. R-27, 369-371.

Parsi, S. Ganjali, M. and SanjariFarsipour N. (2011). Conditional maximum
likelihood and interval estimation for two Weibull populations under joint
Type-Il progressive censoring. Communications in Statistics-Theory and
Methods, 40(12) ,2117-2135.

Parviz, P. and Panahi, H. (2020). Classical and Bayesian Inference for the
Burr Type XIlI Distribution Under Generalized Progressive Type | Hybrid
Censored Sample. Journal of Statistical Theory and Applications,19(4),547
— 957.

Rasouli, A., and Balakrishnan, N. (2010). Exact likelihood inference for two
exponential populations under joint progressive Type-1l censoring.
Communications in Statistics-Theory and Methods, 39 (12), 2172-2191.
Soliman AA, AbdEllah AH, Abou-Elheggag NA and Modhesh AA
(2013). Estimation from Burr type XII distribution using progressive first-
failure censored data. Journal of Statistical Computation and
Simulation83(12):2270-2290.

Torabi H. Bafekrif.S. and Nadeb H. (2015). General progressive joint
Type-11 censoring scheme and inference for parameters of two weibull
populations under this scheme, Advances in Mathematical Modeling,
5(1),19 - 37.

Wingo DR (1993). Maximum likelihood methods for fitting the Burr type
X1 distribution to life test data. Metrika 40 (1):203-210.

Yan,W.,Li, P. and Yu, Y. (2021). Statistical inference for the reliability of
Burr XII distribution under improved adaptive type-ll progressive

censoring, Applied Mathematical Modelling. 95, 38-52.

169



saidlall

i lal e A g sl (e Alasall S jiiall 380 ) a5 Al LY
dilide bosha e Legapial o Cpiihaie Gpadial 4 aall (gl jef Japdadil g 4l slal)
Joint 8 & sl (e Alaadll A8 jifall A8 Hal) aladinl ) Cand) Cargy slinall (uis Jal
A Sy el Hde S gl Hn a5 allae a8l Progressive Type-II Censoring
Al | ool e ghiall ey gl shaid) e el Blall ORI 8 sae lipks
maximum likelihood estimation ale¥) JSeY) i JE@a) & (gl e il
3l Al e Talaie) G <l e (oo a3 3808 (g Sl il Aully el A ) A8 < i
Sy ¢ Metropolis-Hasting dse ) sa alaaiuly 4aall a5 ual) Al Uadll oy 5l
highest posterior 3 ktiall a3l 25l dAle Adlaas Iy padl 13ed A8 & 8 s
ARl g Aad) g Clily £ guia (A doaal) AN OIS e el S8,k A8 &5 density
Ailias ¥ s daaly ) bl () 2 Y R dane ool &5 51 IS < g Sl 43 5

¢ Sl e sl (e Aaeall AS Jiiall 80 pall ¢ e U g il a5 Apalidy) cilalsl)
SIS e oS jla Al ¢ 3 jleadll Al ¢ i AR ) 38 calae V1 IS 0

170



