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Abstract 

Recently the joint progressive type II censoring scheme is useful for 

planning comparative purposes of two identical products manufactured 

coming from different lines. In this paper, we consider the life time Burr 

type XII distribution with jointly progressive type-II censoring scheme. 

The maximum likelihood estimators of the parameters and Bayes 

estimators have been developed using Markov chain Monte Carlo by 

utilizing Metropolis-Hasting algorithm under squared error and linear-

exponential loss functions. In Bayesian approach the Markov chain 

Monte Carlo method is adopted to compute estimates. Moreover, we 

obtain both approximate and Highest posterior density credible intervals. 

Monte Carlo results from simulation studies have been presented to 

assess the performance of our proposed methods. Finally a real data set 

has been analyzed for illustrative purposes. 

 

Keywords: Burr type XIIdistribution; Joint progressive type-II censoring; 

Maximum likelihood estimation; Confidence intervals; Bayesian 

estimation; Loss function; Markov chain Monte Carlo. 
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1. Introduction 

The two parameter Burr type XII distribution (denoted by Burr XII 

distribution) was introduced as a member of the Burr (1942) family of 

distributions which includes 12 types of cumulative distribution functions 

with a variety of density shapes. Among those 12 distributions functions, 

Burr Type XII distribution has received the most attention in the 

statistical literature. This distribution plays major role in the analyses of 

lifetime and survival data. Due to its flexibility and some desirable 

properties, applications have proved to be much wide. Applications may 

be found in areas of quality control, economics, duration of failure time 

modeling, insurance risk and reliability analysis. 

A random variable X is said to have Burr XII ( , ) distribution, if its 

probability density function is given by 

 
( 1)

1( ) 1 , 0, , 0f x x x x
 

      

and a cumulative distribution function                                                              

 ( ) 1 1 , 0F x x x


    (1) 

where  and  are the shape parameters of the distribution. Statistical 

inference based on Burr XII ( , ) distribution as a lifetime model has 

been discussed by several authors, see for example, Papadopoulos (1978), 

Al-Hussaini and Jaheen (1992), Ali Mousa and Jaheen (2002), Jaheen 

(2005) , Soliman et al. (2013), Jang et al. (2014), Gunasekera (2018) , 

Panahi (2019), Ateya et al. (2020),Parviz and Panahi (2020) and Yan et 

al. (2021). 
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Censoring schemes are used to reduce the costs of experiments and 

to accelerate design performance. There are various types of censored 

data to be dealt with in the analysis of lifetime experiments (see 

Lawless(2003)). Almost all of these types of data are concerned with the 

one-sample problems. However, there are situations in which the 

experimenter plans to compare different populations. In such problems, 

the joint censoring scheme is scheme is quite useful in while conducting 

comparative life tests of products from different units within the same 

facility. More clearly for joint censoring scheme, suppose that products 

are being produced by two different lines under the same facility, and that 

two independent samples of sizes m  and n  are selected from these lines 

and placed simultaneously on a life-testing experiment. In order to save 

time and money, suppose the experimenter chooses to terminate the life-

testing experiment when a certain number of failures occur (say, r ). 

Under joint Type-II censoring, specimens of two products under study are 

placed on a life-test simultaneously, successive failure times and the 

corresponding product types will be recorded, and the life-testing 

experiment will get terminated as soon as a pre-specified number of 

failures (say, r ) are observed. Balakrishnan and Rasouli (2008) studied 

the exact likelihood inference for two exponential populations under joint 

Type-II censoring. If an experimenter desires to remove live units at 

points other than the termination point of the life test, the above described 

scheme will not be of use to the experimenter. The joint Type-II 

censoring does not allow for units to be lost or removed from the test at 

points other than the final termination point. So, more general censoring 

schemes are required. 
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Rasouli and Balakrishnan (2010) introduced joint progressive type-II 

censoring (JPC-II) as follows: 

Suppose 1,..., mX X  the lifetimes of m specimens of product 1, and 

are (iid) random variables from a population with distribution function

 1F x and density function  1f x , and  1,..., nY Y  the lifetimes of n 

specimens of product 2 , and are (iid) random variables from a population 

with distribution function   2F x  and density function  2f x . All 

N m n   items are put to life testing at time zero and the experiment is 

terminated as soon as r failures, either from product 1 or from product 2, 

are observed. To run the experiment according to a joint progressive Type 

II censoring scheme, the following algorithm is used: 

(1) At the time of the first failure (that may be from either X orY ), 1R  

units are randomly withdrawn from the remaining 1N   surviving 

units. 

(2) Similarly, at the time of the second failure (which may be from either 

X or Y), 2R  units are randomly withdrawn from the remaining 

1 2N R   surviving units and so on. 

 (3)Finally, Whenthe thr failure is observed, all the remaining

1 2 1...r rR N r R R R       surviving units are withdrawn from the life-

testing experiment. 
 

Here, The progressive type-II censoring scheme 1 2( , ,..., )rR R R R  

has the decomposition 1 1( ,..., ) ( ,..., )r rS Q s s q q   , where R S Q  ,

( )S Q is the number of units withdrawn at the time of the thi  failure that 
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belongs to   X Y sample and these  are  unknown and random variables. 

Thus, The available data consist of  , ,R W where     1
,...,

r
W w w  

with r N being a prefixed integer, 1( ,..., )r   with 1i   or 0 if  i
w is 

from X orY failure respectively. The likelihood of ( , W, and S) is 

given by 

               
1

1 2 1 2

1

,
i i i i

r s q

i i i i
i

L c f w f w F w F w
 





  (2) 

Where 1F F  ,
1 1 1

r r r

i i i

i i i

s q R
  

    ,
1

r

i r

i

s m m


  ,
1

r

i r

i

q n n


   and 

1 2c D D  , such that 

 
1 1 1 1

1

1 1 1 11

(1 ) ( ) 1 ,
j j j jr

i i j i i i j

i i i ij

D m s n R s   
   

   

    
            

    
     

and 

1 1 1 1

1 1 1 1

1

2 1
1

1

(1 ) ( )
j j j j

i i i i i

i i i i

r
j j

j
j

i

i

j

m s n R s

s q
D

m n j R

R

 
   

   








    
         

    
    
     

  
    

  
  
  

   




 

Several authors have addressed inferential issues based on JPC-II 

samples; for example: Rasouli and Balakrishnan (2010) discussed exact 

likelihood inference for the parameters of two exponential populations 

when JPC-II is implemented on the two samples. They developed exact 

inferential methods based on maximum likelihood estimators (MLEs) and 

compared their performance with those based on approximate, Bayesian 

and bootstrap methods, under JPC-II scheme assuming exponential for 
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both samples. Parsi et al. (2011) developed inference of the parameters of 

two Weibull populations under JPC-II, presented the details of the 

proposed model and derives the MLEs of the model parameters. 

Doostparast et al. (2013) considered the Bayesian inference for the 

unknown parameters of two Weibull populations under JPC-II by using 

squared error(SE) and linear-exponential(LINEX) loss function. Torabi 

et.al (2015) discussed general JPC-II censoring scheme and inference for 

parameters of two weibull populations under this scheme. They obtained 

the MLEs and confidence interval using procedures such as asymptotic 

normality and bootstrap methods, under the scheme. Finally, by means a 

simulation study these estimations are evaluated and also all confidence 

intervals are compared in terms of coverage probabilities. Abo-Kasem 

(2020) discussed statistical inferences for two Rayleigh populations based 

on JPC-II censoring scheme. Heobtained the MLEs of the unknown 

parameters when it exists, Bayes estimators for the unknown parameters 

using SE and LINEX loss functions and both approximate and Bayes 

credible confidence intervals. The theoretical results of point and interval 

estimation obtained are assessment and compared through illustrative 

example and simulation studies. Mondal and Kundu (2020) considered 

the JPC-II scheme for two populations when the lifetime distributions of 

the experimental units of the two populations follow two-parameter 

generalized exponential distributions with the same scale parameter but 

different shape parameters. Krishna and Goal (2020) dealed with 

inferences for Lindley populations, when JPC-II censoring scheme is 

applied on two samples in a joint manner. They obtained the MLEs of 

parameters along with their associated confidence intervals which 
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dependent on Fisher’s information matrix and Bayes estimators of 

parameters are considered. A Monte Carlo simulation study is performed 

to measure the efficiency of the estimates also a real data set is given for 

illustrative purpose. Aljohani (2021) discussed statistical inference of 

Chen Distribution populations under JPC-II censoring. He obtained the 

MLEs and Bayes estimators of the unknown parameters. The theoretical 

results are obtained through simulation studies and verified in an analysis 

of the lifetime data. 

The rest of this paper is organized as follows. In Section 2, the 

MLEs and asymptotic confidence intervals are obtained. In Section 3, the 

Bayes estimators under squared error (SE) and linear-exponential 

(LINEX) loss functions and HPD intervals for the parameters using JPC-

II scheme are derived. In Section 4, the theoretical results of point and 

interval estimation compared through illustrative example and simulation 

studies are given. In Section 5, a real data analysis is presented. Finally 

conclusion is given in Section 6. 

2.Maximum Likelihood Estimation 

Let the two populations are Burr type XII distribution with equation 

(1).In this case, the likelihood function in (2) becomes 

    
 

    
 1 2

1 1 2 2

1
1 1

1 1

1 1 2 2

1

1 1  
i ir

i i i i
i

L c w w w w

 
     

     





    
         

    
  

     
1 2

1 21 1
i is q

i i
w w

 
        

   
(3) 

Taking natural logarithm of L gives: 
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          1

1 1 2 2 1 1

1 1

ln ln 1 ln 1 ln 1r r r r

r r
m m n n

i ii i
i i

L c w w  



 

            

            2

2 2

1 1

1 1 ln 1 1 ln 1
r r

i ii i
i i

w w  

 

         

     1 2

1 2

1 1

ln 1 ln 1
r r

i ii i
i i

s w q w
 

 

     (4)                                                                        

The point estimation for 
h  and 

h  1,2h  can be obtained by 

finding the first derivatives of the natural logarithm of the likelihood 

function (4) with respect to h  and h and equating the new equations to 

zero, so we get the following equations 

       

  
   

  

1 1

1 1

ˆ ˆ

1 1ˆ ˆ
1 1 11

ln ln
ˆ ˆln 1 0,

ˆ 1 1

r r r
i i i ir

i i ii
i i i

i i

w w w wm
w s

w w
 

 

 
  

     
  

  

       
   

  
   

  

2 2

2 2

ˆ ˆ

2 2ˆ ˆ
1 1 12

ln ln
ˆ ˆ1 ln 1 1 0,

ˆ 1 1

r r r
i i i ir

i i ii
i i i

i i

w w w wn
w q

w w
 

 

 
  

       
  

  

     1 1
ˆ ˆ

1 11

ln 1 ln 1 0,
ˆ

r r
r

i ii i
i i

m
w s w  

 

    


   

and 

       2 2
ˆ ˆ

1 12

1 ln 1 ln 1 0
ˆ

r r
r

i ii i
i i

n
w q w  

 

     


  (5) 

By solving equations (5) we obtain the MLEs of the parameters 1 1 2, ,  

and 2 , it’s clear that, the analytical solution may be very difficult to find. 

So, we use a numerical methods to obtain 1 1 2
ˆ ˆ ˆ, ,   and 2̂  

The asymptotic variance-covariance matrix for 1 1 2, ,   and 2  is 

obtained by inverting the information matrix through the elements that 

are negative of the expected values of the second order derivatives of the 
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logarithms of likelihood functions. The elements of the sample 

information matrix will be 

 
             

  

1 1 1

1

2 2

2

1 22 2
11 1

ln ln lnln
1

1

r
i i i i i i

r
i

i
i

w w w w w wL m

w



  



 
    

  


 

             

  

1 1 1

1

2 2

1 2
1

ln ln ln
,

1

r
i i i i i i

i

i
i

w w w w w w
s

w

  



 





 

   
             

  

2 2 2

2

2 2

2

2 22 2
12 2

ln ln lnln
1 1

1

r
i i i i i i

r
i

i
i

w w w w w wL n

w



  



 
     

  


 

             

  

2 2 2

2

2 2

2 2
1

ln ln ln
,

1

r
i i i i i i

i

i
i

w w w w w w
q

w

  



 





 

2

2 2

1 1

ln
,rL m

 
 

 

2

2 2

2 2

ln
,rL n

 
 

 

   

  
   

  

1 1

1 1

2

1 11 1

ln lnln
,

1 1

r r
i i i i

i i

i i
i i

w w w wL
s

w w


 

 
 


  
   

   

and 

 
   

  
   

  

2 2

2 2

2

1 12 2

ln lnln
1

1 1

r r
i i i i

i i

i i
i i

w w w wL
q

w w


 

 
 


   
   

  (6) 
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Suppose that ̂  is the MLE of the parameter vector  1 1 2 2, , ,     

.Under some regularity conditions, ̂  is approximately normal with mean 

 and covariance matrix 1I 
 . Practically, we estimate 1I 

 by 1

ˆI


  , then  

1
2 2

2

1 1 1

2 2

2

2 2 21

ˆ 2 2

2

1 1 1

2 2

2

ˆ2 2 2

ln ln
0 0

ln ln
0 0

ln ln
0 0

ln ln
0 0

L L

L L

I
L L

L L









  
  

  
 
  

  
   


  
  

   
 

   
    

 

   

   

   

   

1 1 1

2 2 2

1 1 1

2 2 2

ˆ ˆ ˆvar 0 cov , 0

ˆ ˆ ˆ0 var 0 cov ,

ˆ ˆ ˆcov , 0 var 0

ˆ ˆ ˆ0 cov , 0 var

   
 
   
 


 

   
 

    

 

Now, the approximate confidence intervals of h and h , 1,2h  with 

confidence level 100(1 )%  are given by 

 (1 2)
ˆ ˆvarh hz    and  (1 2)

ˆ ˆvarh hz    , 1,2h  . 

Where  1 2
z


 denotes the upper  1 2  percentage point of the standard 

normal distribution. 

3. Bayesian Estimation 

In this section, the Bayes estimators using SE and LINEX loss 

functions under the assumption of gamma prior for the unknown 
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parameters h  and h  will be obtained. We consider that 1 1 2, ,   and

2 have the following independent gamma prior distributions; 

  
 

1
h

h h h

b
b ah

h h

h

a
e

b
   

  


 , , , 0h h ha b   , 

and 

  
 

1
h

h h h

b
b ah

h h

h

a
e

b
   
  


, , , 0h h ha b    , 1,2h  (7)  

Here all the hyper parameters ha  and hb  are assumed to be known and 

non-negative.Combining (7) with equation (3) and using Bayes theorem, 

the joint posterior density function of 1 1 2, ,   and 2  can be written as: 

      1 1 2 2

1
, , ,  h hx L  


       (8) 

Where    
0 0 0 0

 h h h hL d d  
   

        , 1,2h  . 

Therefore, the Bayes estimator of any function of 1 1 2, ,   and 2 , 

say  1 1 2 2, , ,     under the SE loss function is 

   
1 1 2 2, , , 1 1 2 2, , ,xE          

     1 1 2 2

0 0 0 0

1
, , ,  h h h hL d d  



   

            (9)  

Under a LINEX loss function the Bayes estimate of a function 

 1 1 2 2, , ,      is given by 

  
1

ln E e 


   ,   0  ,(10) 
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where      
0 0 0 0

1
 h h h hE e e L d d   



   

         , 1,2h  . 

Equations (6), (7), (9) and (10) are hard to obtain, so Markov chain 

Monte Carlo (MCMC) approach can be suggested as an approximation of 

the Bayes estimates of 
1 1 2 2, , ,     and generating a posterior sampling 

using Metropolis-Hasting(MH) algorithm. 

Metropolis-Hasting Algorithm 

Suppose our goal is to draw samples from the posterior density (8), 

therefore the MH generates a sequence of draws. To perform the MH 

algorithm for Burr type XII distribution, we have to start with simulating 

a candidate sample from the proposal distribution   . Samples from 

the proposal distribution are not accepted automatically as posterior 

samples, these candidate samples are accepted probabilistically based on 

the acceptance probability. more clearly for the steps of MH algorithm to 

draw a sample, follow the following steps: 

Step 1.Set 1i  . 

Step 2. Start with any initial value  1i


 . 

Step 3. Using the initial value, sample a candidate point  from proposal 

distribution   . 

Step 4. Given the candidate point   , Calculate the acceptance probability 

 
  1

min 1,
i

x
B

x

 

 


 
 
 
 
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where  . is the posterior density in (8). 

Step 5. Draw a value of u  from the uniform distribution  0,1U . 

Step 6. Accept or reject the new candidate    

 

   1

If 

otherwise set  

i

i i

u B set  

 


  




 

Step 7.Set 1i i  , and repeat steps 2-7 M times until we get M draws.  

Finally, from the random samples of size M drawn from the posterior 

density, some of the initial samples can be discarded (burn-in), and 

remaining samples can be further carried out to calculate Bayes estimates. 

More accurately (9) can be estimated as 

 1

b

M
i

i lbM l
 






  

where M is the sample size drawn from the posterior density and bl

represent the number of burn-in samples (Dey and Pradhan (2014)). 

 

Highest Posterior Density Intervals 

The technique of Chen and Shao (1999) has been broadly utilized 

for constructing highest posterior density (HPD) intervals for   of Burr 

type XII distribution under JPC-II. In this sub-section, the samples drawn 

using the proposed MH algorithm shall be employed to construct the 

interval estimates. More accurately, let us assume that  x denotes the 

posterior distribution function of  . Let us further suppose that    be 

the th quantile of  , that is, 



 

156 
 

    inf : x


       

where 0 1  , inf is meaning infinimum. Notice that for a given   , a 

simulation consistent estimator of  x   can be estimated as 

 
1

b

M

i lb

x I
M l  

 






 


  

Where M is the sample size drawn from the posterior density, bl represent 

the number of burn-in samples and I
  

 is the indicator function defined 

as 

1          

0    

if
I

otherwise
 

 






 
  
 
 

 

Then the corresponding estimate is obtained as 

 

 

   

 

1

0                <

ˆ       < <

1                <

b

b

l

i

j i i
j l

M

if

x if

if

 

    

 



 










  




  

Where 
1

j

bM l
 


and  j

 are the ordered values of 
j . Now, for 

,...,bi l M ,    can be approximated by 

 
 

 

1

0 
b

b b

l

i i

j ji
j l j l

if

if



 


   



 




 
 


 

 

Now, a  100 1 % HPD credible interval for   ,let 



 

157 
 

 1

,

j Mj

MM

jHPD



 

   
    

   

 
 
 
 

 

for  ,...,bj l M . Then choose 
j

HPD  among all the 
jHPD s such that it 

has the smallest width (see Chen and Shao (1999)). 

4. Simulation results  

The simulation study is conducted by considering different values of 

sample sizes for the two populations as m = 30,50,60 and n  = 30,50,60 , 

different choices of joint progressive type-II censoring schemes with r = 

24,36,48,40,60,80,48,72,96 for example, and by choosing 

   1 1 2 2, , , 1.5,0.5,2,0.75     . For all these cases, the MLEs, root mean 

squared errors MSE and the 95% simultaneous confidence intervals for 

 1 1 2 2, , ,     and the corresponding coverage probabilities are 

computed. The Bayesian estimates of  1 1 2 2, , ,     under the SE and 

Linex loss functions are also computed based on 1000 simulations and 

compute the average values of all the estimates. The average value of the 

MLEs  1 1 2 2
ˆ ˆ ˆ ˆ, , ,     and  MSE  are summarized in Table 1. In Table 2 

the coverage probabilities and the average widths of 95% CIs of 

 1 1 2 2, , ,    for approximate confidence intervals are presented for 

some small, moderate and large values of m , n and r .Bayesian estimates 

of  1 1 2 2, , ,    for different choices of m , n and r  are presented in 

Table 3, and HPD credible intervals of  1 1 2 2, , ,    in Table 4. 
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Table 1 : The average values of the MLEs of  1 1 2 2, , ,     and 

 MSE  for small, moderate and large values of m , n and r  

  

(𝑚, 𝑛) 
𝑟 Scheme (R) 

1̂ 
MSE

 
1̂ 

MSE

 
2̂ 

MSE

 
2̂ MSE

 

 

 

 

 

(30,30) 

 

 

24 

 

(4(9),0(15)) 1.639 0.928 0.355 0.612 1.879 0.794 0.132 1.627 

(0(15),4(9)) 2.249 1.168 1.514 1.170 2.323 0.676 0.599 0.362 

 

36 

 

(3(8),0(28)) 1.663 0.563 0.484 0.164 2.161 0.556 0.639 0.184 

(0(28),3(8)) 2.080 0.819 1.519 1.136 2.153 0.533 0.483 0.289 

48 
(6(2),0(46)) 1.682 0.668 0.502 0.152 2.159 0.492 0.755 0.187 

(0(46),6(2)) 1.996 0.720 0.928 0.499 1.897 0.427 0.493 0.279 

 

 

 

(50,50) 

 

 

 

 

40 

 

(10(6),0(34)) 1.734 0.673 0.459 0.164 2.229 0.551 0.631 0.195 

(0(34),10(6)) 1.931 0.649 1.289 0.842 2.128 0.439 0.514 0.259 

60 
(5(8),0(52) 1.639 0.396 0.486 0.122 2.209 0.437 0.689 0.152 

(0(52),5(8)) 1.978 0.384 1.464 1.022 1.899 0.083 0.475 0.082 

80 
(1(20),0(60) 1.558 0.295 0.494 0.105 2.072 0.356 0.682 0.130 

(0(60),1(20))  1.766  0.421  0.823  0.365 2.076 0.324 0.567 0.207 

 

 

 

(60,60) 

48 
(9(8),0(40)) 1.646 0.412 0.464 0.141 2.201 0.435 0.622 0.189 

(0(40),9(8)) 1.929 0.628 1.318 0.864 2.121 0.386 0.522 0.249 

72 
(8(6),0(66)) 1.636 0.389 0.482 0.114 2.148 0.377 0.722 0.138 

(0(66),8(6)) 2.094 0.708 1.599 1.147 1.943 0.288 0.444 0.313 

96 (12(2),0(94)) 1.595 0.324 0.496 0.101 2.089 0.318 0.752 0.130 

(0(94),12(2)) 1.899 0.254 0.939 0.225 1.797 0.112 0.485 0.075 
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Table 2 : Simulated coverage probabilities (CP) and the average 

widths of the 95% confidence intervals for  1 1 2 2, , ,    for some 

small, moderate and large values of m , n and r  

 

  

(𝒎, 𝒏) 𝒓 Scheme (R) 
1̂ 

1̂ 2̂ 
2̂ 

 
  Length %CP Length %CP Length %CP Length %CP 

        

 

 

 

 

 

(30,30) 

 

 

24 

 

(4(9),0(15)) 3.439 96.38 1.522 100.00 3.077 95.47 3.082 100.00 

(0(15),4(9)) 3.517 95.99 2.294 96.09 2.330 95.29 1.245 98.49 

 

 

36 

(3(8),0(28)) 2.115 95.99 0.644 95.69 2.084 95.69 0.577 96.09 

(0(28),3(8)) 2.269 96.00 1.973 96.40 2.004 96.10 0.439 96.90 

48 
(6(2),0(46)) 2.519 98.20 0.6005 96.30 1.827 95.50 0.729 96.10 

(0(46),6(2)) 2.051 95.80 1.016 96.20 1.621 96.10 0.416 96.50 

 

 

 

 

 

(50,50) 

40 

 

(10(6),0(34)) 2.476 96.30 0.619 96.40 1.968 96.40 
0.600 96.10 

(0(34),10(6)) 1.902 95.30 1.149 96.50 1.648 96.20 
0.418 96.30 

60 

(5(8),0(52) 
1.454 94.70 0.478 95.70 1.503 96.30 

0.541 95.90 

(0(52),5(8)) 1.777 96.192 1.413 96.593 1.207 95.99 
0.296 97.194 

80 

(1(20),0(60) 1.134 95.50 0.411 97.20 1.369 96.30 0.430 96.70 

(0(60),1(20)) 1.279 95.60 0.663 96.80 1.235 96.60 
0.392 96.60 

 

 

 

 

 

(60,60) 

48 

(9(8),0(40)) 1.514 96.00 0.543 95.70 1.515 95.70 
0.556 96.30 

(0(40),9(8)) 1.796 95.70 1.083 96.60 1.438 96.00 
0.394 97.20 

72 
(8(6),0(66)) 1.435 95.50 0.443 96.30 1.359 96.30 

0.533 96.30 

(0(66),8(6)) 1.509 96.20 1.293 95.80 1.109 95.90 0.259 96.50 

96 (12(2),0(94)) 1.217 95.60 0.394 97.20 1.196 95.90 0.512 96.80 

(0(94),12(2)) 1.207 96.60 0.708 96.20 1.044 96.00 0.277 97.40 
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Table 3 : Bayesian estimates of  1 1 2 2, , ,    for different choices of 

m , n and r  

 

(𝑚, 𝑛) 𝑟 Scheme (R) SE Loss LINEX Loss 

   
1̂ 

1̂ 2̂ 
2̂ 1̂ 

1̂ 2̂ 
2̂ 

 

 

 

 

 

(30,30) 

 

 

24 

 

(4(9),0(15)) 1.449 0.444 1.701 0.448 1.278 0.425 
1.499 0.434 

(0(15),4(9)) 1.850 1.228 2.065 0.592 1.627 1.079 1.839 0.566 

 

36 
(3(8),0(28)) 1.557 0.501 1.967 0.679 1.405 0.477 1.793 0.639 

(0(28),3(8)) 1.886 1.378 1.962 0.504 1.722 1.254 
1.812 0.492 

48 
(6(2),0(46)) 1.557 0.519 1.995 0.787 1.444 0.502 

1.857 0.754 

(0(46),6(2)) 1.864 0.916 1.758 0.524 1.727 0.869 1.651 0.510 

 

 

 

 

(50,50) 

40 

 

(10(6),0(34)) 1.594 0.461 2.057 0.653 1.499 0.449 
1.928 0.624 

(0(34),10(6)) 1.745 1.166 1.975 0.516 1.615 1.086 
1.855 0.505 

60 

(5(8),0(52) 1.578 0.492 2.086 0.708 1.495 0.481 1.979 0.689 

(0(52),5(8)) 1.978 1.464 1.899 0.475 1.869 1.380 
1.817 0.469 

80 

(1(20),0(60) 1.511 0.505 1.979 0.701 1.444 0.495 
1.894 0.686 

(0(60),1(20)) 1.712 0.822 1.987 0.584 1.635 0.798 
1.907 0.575 

 

 

 

(60,60) 

48 

(9(8),0(40)) 1.571 0.466 2.066 0.635 1.489 0.455 
1.951 0.617 

(0(40),9(8)) 1.774 1.208 1.994 0.523 1.662 1.136 
1.891 0.513 

72 

(8(6),0(66)) 1.582 0.489 2.052 0.736 1.512 0.479 
1.964 0.719 

(0(66),8(6)) 2.001 1.519 1.863 0.456 1.907 1.443 
1.795 0.451 

96 (12(2),0(94)) 1.573 0.505 2.013 0.769 1.492 0.496 1.937 0.753 

(0(94),12(2)) 1.847 0.933 1.732 0.503 1.779 0.909 1.678 0.497 
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Table 4 :HPD credible intervals of  1 1 2 2, , ,    for different choices 

of m , n and r  

 

(𝑚, 𝑛) 𝑟 Scheme (R) HPD Interval 

 

  
1̂ 

1̂ 2̂ 2̂ 

Length %CP Length CP% Length CP% Length CP% 

 

 

 

 

 

(30,30) 

 

 

24 

 

(4(9),0(15)) 1.359 96.898 0.571 96.526 1.580 96.484 0.358 96.199 

(0(15),4(9)) 2.009 96.076 1.286 96.593 1.629 96.589 0.559 96.092 

 

36 
(3(8),0(28)) 1.313 96.053 0.580 96.396 1.409 95.647 0.515 96.891 

(0(28),3(8)) 1.614 96.084 1.332 96.894 1.341 96.493 0.395 97.297 

48 
(6(2),0(46)) 1.275 96.281 0.519 96.10 1.329 95.573 0.616 97.295 

(0(46),6(2)) 1.496 95.591 0.877 96.600 1.125 96.997 0.377 96.600 

 

 

 

 

(50,50) 

40 

 

(10(6),0(34)) 1.431 95.959 0.556 95.996 1.420 96.375 0.519 97.097 

(0(34),10(6)) 1.505 95.70 0.858 96.60 1.279 96.40 0.358 95.80 

60 

(5(8),0(52) 1.228 96.80 0.459 98.000 1.229 97.10 0.482 97.000 

(0(52),5(8)) 1.435 95.591 1.142 97.99 1.017 95.79 
0.301 96.794 

80 

(1(20),0(60) 0.974 96.90 0.383 97.70 1.111 96.30 0.409 97.80 

(0(60),1(20)) 1.122 96.70 0.612 97.70 1.043 96.60 0.369 96.60 

 

 

 

(60,60) 

48 

(9(8),0(40)) 1.193 95.696 0.521 96.20 1.236 96.20 0.480 97.50 

(0(40),9(8)) 1.452 95.60 0.833 96.40 1.155 96.90 0.327 96.10 

72 

(8(6),0(66)) 1.185 95.596 0.432 98.60 1.082 96.49 0.478 96.30 

(0(66),8(6)) 1.303 96.80 1.097 96.40 0.935 96.70 0.252 96.20 

 

96 

(12(2),0(94)) 1.044 96.30 0.364 96.90 1.018 95.60 0.464 96.50 

(0(94),12(2)) 0.983 96.20 0.661 97.60 0.830 96.20 0.269 98.80 
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The results presented in Table 1 show that the bias of the MLEs is 

affected by the form of JPC-II employed. From the results presented in 

Tables 1 and 3, it is clear that the estimates based on the SE and LINEX 

loss functions yield better results than those of the MLEs. In addition, we 

observe that for larger number of m , n and r , the MLEs and Bayesian 

estimators yield better results than when m , n and r are small. From the 

results presented in Tables 2 and 4, we observe that HPD credible 

intervals are with shorter width than those based on approximate intervals 

and for both two interval estimates, when r becomes large, the coverage 

probabilities rarely improve and get close to the nominal value with 

shorter width of it when sample sizes m and n are large. 

5. Real data analysis 

A real data set is analyzed for illustrative purpose as well as to 

assess the statistical performances of the MLEs and Bayes estimators for 

the Burr XII distribution under different JPC-II schemes. 

The following original data set which provided by Wingo (1993) 

generated from a clinical trial describing a relief time (in hours) for 30 

arthritic patients 

0.70, 0.58, 0.54, 0.59, 0.71, 0.55, 0.63, 0.84, 0.49, 0.87, 0.73, 0.72, 0.62, 

0.82, 0.84, 0.29, 0.51, 0.61, 0.57, 0.29, 0.36, 0.46, 0.68, 0.34, 0.44, 0.75, 

0.39, 0.41, 0.46, 0.66 

To illustrate the usefulness of the proposed estimators obtained in 

Sections 2 and 3 with real situations, we divided the data into two 

samples by randomly sampling (𝑚 = 15) observations and considering 

these observations as the 𝑋 sample, and the remaining (𝑛 = 15)  

observations are taken as the 𝑌 sample, see Table (5). 
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Table (5): failure times of .. 

Data: X  

0.36, 0.57, 0.29, 0.36, 0.58, 0.58, 0.72, 0.46, 0.72, 0.68, 

0.84, 0.87, 0.63, 0.59, 0.54 

Data: Y  

0.70, 0.71, 0.55, 0.49, 0.73, 0.62, 0.82, 0.51, 0.61, 0.34, 

0.44, 0.75, 0.39, 0.41, 0.66 

Then, we fit Burr XII distribution to each sample and report the results in 

Table (6). We provided the Kolmogorov-Smirnov test statistic values (K-

S) and the corresponding p-values, saying that the data fit the Burr XII 

distribution with the parameters given in Table (6). 

Table (6): MLEs and Kolmogorov-Smirnov test results for data 

Data 
1̂  2̂  

1̂  2̂  K-S p-value 

X  4.6780 --- 8.1718 --- 0.1339 0.9507 

Y  --- 4.9079 ---- 9.7225 0.1225 0.9573 
 

Form Table (6), the calculated Kolmogorov-Smirnov (K-S) distance 

between the empirical and the fitted extended for the Burr XII 

distribution for the first population (X) is 0.1339 and its p-value is 0.9507 

where 1
ˆ 4.6780   and 1

ˆ 8.1718  , and for the second population (Y) is 

0.1225 and its p-value is 0.9573 where 2
ˆ 4.9079  and 2

ˆ 9.7225  which 

indicate that this distribution can be considered as an adequate model for 

the given two data set (X and Y). 

From the original data, one can generate, e.g., two JPC-II samples 

with number of stages 𝑟 = 12 and removed items 𝑅𝑗 are assumed as: 
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 Scheme I:𝑅1 = 𝑅2 = ⋯ = 𝑅11 = 1, 𝑅12 = 7. This is can be 

written as: (1*11, 7) 

 Scheme II:𝑅1 = 7, 𝑅2 = 𝑅3 = ⋯ = 𝑅12 = 1. This is can be 

written as: (7,1*11) 

In Table (7), the MLEs of the parameters 
1 1 2, ,   and 

2 have been 

calculated at proposed schemes JPC-II samples where two population of 

failures (X and Y) as in the given real data set and follows Burr XII 

distribution. 

Also, Bayes estimates was computed by utilizing the MH algorithm 

under the Non-informative prior for SE and LINEX loss functions with 

initial value of 2  and 2   . 

It is indicated that, while generating samples from the posterior 

distribution utilizing the MH algorithm, initial values of 1 1 2, ,   and 2

are considered as the MLEs of these parameters. Finally, discarded 2000 

burn-in samples among the total 10000 samples created from the 

posterior density, and subsequently obtained Bayes estimates under two 

error loss functions (SE and LINEX). 

Finally in Table (8), associated asymptotic confidence interval 

estimates and HPD credible interval are computed. 
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Table (7): MLE, Bayesian, and standard errors for real data set 

based on joint progressive Type-II censoring under various censoring 

schemes 

Scheme Parm. 
MLE Bayes SE 

Bayes LINEX  

2    2    

Estimate St.E Estimate St.E Estimate St.E  Estimate St.E 

I 

1  4.3495 1.2973 3.1072 0.0085 2.6485 0.0088 3.0197 0.0057 

1
 24.3194 24.9542 9.2444 0.0895 2.9225 0.1056 7.4112 0.0589 

2
 5.5855 1.4906 3.7836 0.0114 3.1468 0.0120 4.4139 0.0094 

2
 

22.9024 23.5686 7.2930 0.0923 2.2814 0.1323 12.7756 0.1366 

II 

1  4.4796 1.2891 3.5848 0.0116 2.8314 0.0121 3.5993 0.0121 

1
 15.3353 13.2796 9.2436 0.1009 2.7270 0.1026 11.1457 0.134 

2
 3.8771 1.1596 2.9403 0.0110 2.2367 0.0111 3.3374 0.0124 

2
 3.0513 1.8515 1.5678 0.0109 1.0551 0.0134 3.4366 0.0356 

Parm.-Parameter, St.E-Standard error. 

Table (8): Associated interval estimates for MLE and HPD credible 

interval for real data set based on joint progressive Type-II censoring 

under various censoring schemes  

CI for 2  CI for 1  CI for 2  CI for 1  Scheme CI 

      

(8.2947, 

37.5101) 

(4.6616, 

6.5094) 

(8.8529, 

39.7860) 

(3.5454, 

5.1536) 

I Approximate 

(7.8966, 

26.0476) 

(4.8685, 

6.6870) 

(5.2524, 

14.1441) 

(3.6469, 

5.1385) 

II  

(0.8330, 

23.9039) 

(2.2237, 

5.8287) 

(1.0509, 

26.0569) 

(1.8140, 

4.5663) 

I HPD 

(3.4988, 3.3774) (4.9686, 

3.9177) 

(0.7071, 

25.7789) 

(1.7363, 

5.8197) 

II  

Asy CI- Asymptotic confidence interval. 
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6. Conclusions 

The object of this paper is to discuss different estimation problems 

as MLE and Bayes estimation of unknown parameters for two Burr type 

XII populations under JPC-II samples. The MLEs of the parameters, 

corresponding Fisher information matrix and associated asymptotic 

confidence interval estimates have been derived. Also, Bayes estimates 

and associated HPD credible interval have been investigated using MH-

algorithm under SE and LINEX loss functions. Finally real data set has 

been analyzed Wingo (1993) and a simulated study has been conducted to 

compare the performance of the various proposed estimators. From these 

results, when the sample sizes of two populations m ,n and the total 

number of failures rare large, the estimators’ biases are small and the 

confidence intervals have desirable coverage probabilities. Also, it is 

noted that when r increases, the bias of the MLEs becomes negligible and 

the confidence length decreases. It can be seen that the coverage 

probabilities based on the HPD credible intervals better than the 

approximate confidence intervals. 
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 :الملخص

المراقبة المشتركة المعجلة من النوع الثاني مفيدا في اختبارات تعد  الأخيرة،في الآونة 

الحياة النسبية ولتخطيط أغراض المقارنة لمنتجين متطابقين تم تصنيعهما من خطوط مختلفة 

 Jointالمراقبة المشتركة المعجلة من النوع الثاني استخدام يهدف البحث الي  داخل نفس المنشأة.

Progressive Type-II Censoring لعينتين والتي له  لتقدير معالم توزيع بير النوع الثاني عشر

تطبيقات عديدة في اختبارات الحياة وذلك من المنظور البيزي ومن المنظور غير البيزي . بالنسبة 

 maximum likelihood estimation للتقدير غير البيزي تم اشتقاق تقدير الامكان الأعظم

وفترات الثقة التقاربية. أما بالنسبة للتقدير البيزي فلقد تم حساب مقدرات بيز اعتمادا على دالة الخسارة 

، وكذلك  Metropolis-Hastingالخطية باستخدام خوارزمية -لمربع الخطأ ودالة الخسارة الأسية

 highest posteriorحساب فترات ثقة لهذا التقدير ذات مصداقية عالية للكثافة اللاحقة المناظرة 

density.  تم مناقشة طريقتي التقدير من خلال النتائج العددية في ضوء بيانات واقعية وباستخدام

 والاحصائية.لأغراض الحسابات الرياضية  Rطريقة المحاكاة مونت كارلو. تم استخدام برمجية 

ة المعجلة من النوع الثاني ؛ توزيع بير النوع الثاني عشر ؛ المراقبة المشترك :الافتتاحيةالكلمات 

 ؛ دالة الخسارة ؛ سلسلة ماركوف مونتي كارلو.يز تقدير الٍامكان الأعظم؛ فترات الثقة؛ تقدير ب

 

 


