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Abstract 

            The estimating problems of the model parameters, reliability and 

hazard functions of extended exponential distribution used Type-II 

progressive hybrid censoring scheme (Type-II PHCS) will be considered. 

The maximum likelihood estimation (MLE) has been obtained for any 

function of the model parameters. Based on the normality property of the 

classical estimators, approximate confidence intervals (ACIs) for the 

unknown parameters and any function of them are constructed. Further, 

construct the asymptotic confidence interval of the reliability and hazard 

rate function. Using independent gamma priors, the Bayes estimators of the 

unknown parameters are derived based on both the symmetric (squared 

error (SE)) and asymmetric (LINEX) loss functions. Since the Bayes 

estimators are obtained in a complex form therefore, Markov Chain Monte 

Carlo (MCMC) using Metropolis-Hastings (MH) algorithm has been used 

to carry out the Bayes estimates and also to construct the associate highest 

posterior density credible intervals. To evaluate the performance of the 

proposed methods, a Monte Carlo simulation study is carried out. Finally, 

we consider engineering data to illustrate the applicability of the methods 

covered in the paper.                                                     

 

Keywords: Extended exponential distribution; Reliability and hazard rate 

functions;  Bayesian and non-Bayesian estimation; MCMC; Type-II 

progressive hybrid censoring. 
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1. Introduction 

A new generalization of the exponential distribution as an alternative 

to gamma, Weibull and generalized-exponential lifetime models has been 

introduced by Nadarajah and Haghighi (2011). The extension of the 

exponential distribution was named NHD by Lemonte (2013) as an 

abbreviation for the name authors Nadarajah and Haghighi. Also, many 

properties of extended exponential distribution are discussed by Nadarajah 

and Haghighi (2011). Suppose that the lifetime X of a testing unit follows 

two-parameter extended exponential distribution ( , )  . The probability 

density function ( )f  , cumulative distribution function ( )F  , reliability 

function ( )S   and hazard rate function ( )H  , for given mission time t , are 

given by 

1( ) (1 ) exp(1 (1 ) ) ; 0, , 0f x x x x           ,                           (1) 

( ) 1 exp(1 (1 ) ) ; 0, , 0F x x x        ,                          (2) 

( ; , ) exp(1 (1 ) ) ; 0S t t t      ,                                 (3) 

and 

1( ; , ) (1 ) ; 0H t t t                                                      (4) 

respectively, where   and   are the shape and scale parameters, 

respectively.  

Recently, many studies on estimating the unknown parameters of 

extended exponential distribution based on different life-testing 

experiments have been carried out by many authors. Singh et al. (2015a) 

obtained the MLE and Bayes estimators of the extended exponential 

distribution under Type-II progressive censoring scheme (Type-II PCS). 
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Singh et al. (2015b) discussed the MLEs and Bayes estimators of the 

unknown parameters and reliability characteristics of the extended 

exponential distribution based on complete sampling.. Sanku et al. (2017) 

introduced a comparisons between several methods for estimating the 

unknown parameters of extended exponential distribution. Sana and Faizan 

(2019) discussed MLE and Bayes estimation of the two unknown 

parameters of extended exponential distribution based on record values. 

Ashour et al. (2020) obtained The MLE and Bayes inferential approaches 

for estimating the unknown two parameters and some lifetime parameters 

such as reliability and hazard rate functions of extended exponential 

distribution in presence of progressive first-failure censored sampling. Wu, 

M. and Gui, W. (2021) obtained estimation and prediction for extended 

exponential distribution under progressive Type-II censoring. 

In conventional Type-I and Type-II censoring, a life test is 

terminated at a prescribed time span or at a predefined number of failures. 

The main drawback of these censoring schemes is, the units cannot be 

removed from the test at any time point except the final closure point. 

However, the Type-II PCS gives the flexibility of eliminating  the test units 

before the final termination. On other hand, the major drawback of the 

Type-II PCS is that, it can take a lot of time to reach the final termination 

point (Childs et al. (2008)). They introduced  Type-II progressive hybrid 

censoring scheme (Type-II PHCS). Type-II PHCS involves  the  

termination  of  the  life test  at time ( )max( , )rT x T  . Let D denote the  

number of  failures  that  occur  before  time T , if 
( )rx T ,  the experiment  

would  terminate  at  the  thr  failure, with    the  withdrawal  of  units 

occurring   after  each  failure  according   to  the   pre-fixed   progressive 
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censoring scheme 1 2, ,..., rR R R  .However, if 
 ( )rx T , then instead of 

terminating the experiment by removing all remaining rR units after the 

thr failure, the experiment would continue  to observe  failures without  any  

further  withdrawals up to time T . Thus, in this case 
1 ... 0r r DR R R    . 

          Based on the above Type-II PHCS ,the observed date will be one of 

the following two form;      

(1) (2) ( ) ( )

(1) ( ) ( 1) ( ) ( )

: ... ,

: ... ... .

r r

r r D r

I X X X if X T

Case

II X X X X if X T

  


      

  

          The likelihood function of the observed data (without  constant  term) is 

given by 

( ) ( )

1

( ) ( ) ( )

1 1

( ( )(1 ( )) ),

( ; ) (5)

( ( )(1 ( )) )( ( ))(1 ( )) .

i

i D

r
R

i i

i

r D
R R

i i i

i i r

f x F x for case I

L x

f x F x f x F T for case II







  





 

  




 

 

where 
DR   is the number of remaining units left at the time point T for case 

II.  This procedure is guarantees that the life test would yield at last r  

complete failure  times. 

For more details and some recent references on progressive hybrid 

censoring schemes, see Kundu and Joarder (2006), Lin et al. (2009), 

Joarder et al. (2009), Bayat Mokhtari et al. (2011), Hemmati and Khorram 

(2013), Gurunlu Alma and Arabi Belaghi. (2016) and Kayal et al. (2017). 

The aim of this paper is the estimation of the unknown parameters, 

hazard rate and reliability functions of extended exponential distribution 

under Type-II PHCS .In section 2, The MLEs and the information matrix 

will be discussed to obtain asymptotic confidence intervals for the 
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parameters and estimate reliability and hazard rate functions. Further, 

Bayesian estimation under the assumption of independent gamma priors 

using SE and LINEX loss functions will be discussed in section 3. 

Numerically proposed methods using Monte Carlo simulations and a real 

data set is compared in Section 4. Finally a conclusion is given in Section 5. 

2. Maximum Likelihood Estimation  

In this section, maximum likelihood estimation and its information 

matrix for the unknown parameters of the extended exponential distribution 

(1) will be obtained using Type II progressive hybrid censoring (5). 

The likelihood function is given by 

( ) ( )

( ) ( )

( )

(1 (1 ) ) (1 (1 ) )1

( )

1

(1 (1 ) ) (1 (1 ) )1

( )

1

(1 (1 ) )1 (1 (1 ) )

( )

1

(1 ) (1 (1 ))

( ; , ) (1 ) (1 (1 ))

(1 ) (1 (1 ))

i i i

i i i

i

r
x x R

i

i

r
x x R

i

i

D
x T

i

i r

x e e for case I

L x x e e for case II

x e e

 

 

 

 

 

 

 

   

 

   



   



   

 

  

   

  





 DR 











  (6)  

Taking natural logarithm, we get 

( )

( )

1

(1 (1 ) )

( )

1

( )

1

( ) ( )

1

( )

1

ln ln ( 1) ln(1 )

(1 (1 ) ) ln(1 (1 ))

ln ln ( 1) ln(1 )

ln ( ; , )

(1 (1 )) ((1 (1 ) )

ln ln ( 1) ln (1 )

r

i

r

i

i

r
x

i i

i

i

i

r

i i i

i

D

i

i r

r r x

x R e for case I

r r x

L x

x R x

D D x



 

   



   

 

 

   



 







 

    

    

    



    

    









( )

1

(1 (1 )) ((1 (1 ) ))
D

i D

i r

x R T for case II  

 


















     






      (7) 
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Differentiating ln ( ; , )L x    partially with respect to   and  , we get 

the following two equations. 

( ) ( ) ( )

1 1

( ) ( ) ( )

1 1

( ) ( ) ( )

1 1

ln(1 ) (1 ) ln(1 )

(1 )

ln ( ; , )
ln(1 ) (1 ) ln(1 )[1 ]

ln(1 ) (1 ) ln(1 )

(1 ) ln(1 )

r r

i i i

i i

i

r r

i i i i

i i

D D

i i i

i r i r

i

r
x x x

R for case I

L x r
x x x R

D
x x x

R T T for c









  


 
  

 

  


 

 

 

   



    




      



     

  

 

 

 

ase II















      (8) 

and 

( ) 1

( ) ( )

1 1( )

( ) 1

( ) ( )

1 1( )

( ) 1

( ) ( )

1 1( )

1

( 1) (1 )
1

[1 ]

ln ( ; , )
( 1) (1 ) [1 ]

1

( 1) (1 )
1

(1 )

r r
i

i i

i ii

i

r r
i

i i i

i ii

D D
i

i i

i r i ri

i

xr
x x

x

R for case I

xL x r
x x R

x

xD
x x

x

R T T for ca









  
 

 
  

  

  
 

 



 



 



   

 

   





     

 

    


 

 

 

 

se II















    (9) 

Since these equations after equating them to zero are clearly 

transcendental equations in ̂  and ̂ that is, no closed form solutions are 

known they must be solved by iterative numerical techniques to provide 

solutions (estimates),  ̂  and ̂ , in the desired degree of accuracy. 

If ̂  and ̂  are the MLEs of the parameters then by using the 

invariance properties, the MLEs of hazard rate function and survival 

function are given by, respectively. 

                                             
ˆ 1ˆ ˆˆ ˆ( ) (1 )H x t                                          (10) 

and 

                                              
ˆˆ(1 (1 ) )ˆ( ) tS x e
                                           (11) 
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To study the variation of the MLEs  ̂  and ̂ , the asymptotic 

variance of  these estimators are obtained. The asymptotic variance 

covariance matrix of , ̂  and ̂ ,  is obtained by inverting the information 

matrix with elements that are negative expected values of the second order 

derivatives of natural logarithms of the likelihood function, for sufficiently 

large samples, a reasonable approximation to the asymptotic variance 

covariance matrix of the  estimators can be obtained as 

1
2 2

2
1

2 2

2
ˆˆ( , )

ln ( ; , ) ln ( ; , )
ˆˆ ˆ( ) ( , )ˆˆ( , )

ˆ ˆln ( ; , ) ln ( ; , ) ˆ( , ) ( )

L x L x

Var Cov
I

L x L x Cov Var

 

   

    
 

      

  





  
      
    

          

       (12) 

The elements of the previous sample information matrix can be 

obtained such that
 

2

( ) ( )2
1

22
( ) ( )2

12

2

( ) ( )2
1

2

(ln(1 )) (1 ) [1 ]

(ln(1 )) (1 ) [1 ]ln ( ; , )

(ln(1 )) (1 )

(1 ) [ln(1 )]

r

i i i

i

r

i i i

i

D

i i

i r

D

r
x x R for case I

r
x x RL x

D
x x

R T T for case II









 


  




 


 





 




   




    
 

 
   

  







, 
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2

( )

2 2
1 ( )

2 2

( ) ( )

1

22
( ) 2 2

( ) ( )2 2 2
1 1( )

2

( ) 2

( )2 2
1 ( )

( 1)
(1 )

( 1) (1 ) [1 ]

ln ( ; , )
( 1) ( 1) (1 ) [1 ]

(1 )

( 1) ( 1) (1
(1 )

r
i

i i

r

i i i

i

r r
i

i i i

i ii

D
i

i

i r i

xr

x

x x R for case I

xL x r
x x R

x

xD
x

x






 

  

 
   

  

  
 









 

 


  



  

 
      

 

    






 

 2

( )

1

2 2

)

[ ( 1) (1 ) ]

D

i

i r

D

x

R T T for case II







  



 

 












 


  





 

and 

( ) 1

( ) ( )

1 1( )

( )

( ) 1

( ) ( )2 2
1 1( )

( )

( )

1 ( )

( ) ( )

(1 )
(1 )

( ln(1 ) 1)[1 ]

(1 )
(1 )ln ( ; , ) ln ( ; , )

( ln(1 ) 1)[1 ]
(1 )

(1

r r
i

i i

i ii

i i

r r
i

i i

i ii

D
i

i i

i r i

i i

x
x x

x

x R for case I

x
x x

xL x L x

x
x R

x

x x








 


   

   
 







 



 

 

 


  

 
 

 
   

   


 

 

 



1

( )

1

1

) ( ln(1 ) 1)

[ (1 ) ][ ln(1 ) 1]

D

i

i r

D

x

R T T T for case II





 

  



 

 















  

   



 

Diagonal elements of 1 ˆˆ( , )I    provides the asymptotic variance of 

  and    respectively. Then using large sample theory a two sided 

100( %1  )   approximate confidence interval for    can be constructed as 

1 2
ˆ ˆvar( )z   and similarly, for  the two sided 1 1   )%00(   approximate 

confidence interval can be obtained as 
1 2

ˆ ˆvar( )z   . 

To construct the ACIs of ( )S t  and ( )H t , The variances of them is 

needed Therefore, the delta method is considered to obtain the approximate 

estimates of the variance of ˆ( )S t  and ˆ ( )H t . Delta method is a general 
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approach for computing ACIs for any function of the MLEs ̂  and ̂ , (See 

Greene (2012)). According to this method, the variance of ˆ( )S t  and ˆ ( )H t , 

can be approximated, by 

2 1

ˆ 0( )

ˆ ˆˆ [ ( )] [ ( )]T

S t
S t I S t         and   2 1

ˆ 0( )
ˆ ˆˆ [ ( )] [ ( )]T

H t
H t I H t     

respectively, where the gradient vector of first partial derivatives of ( )S t  

and ( )H t  with respect to   and   obtained at ̂  and ̂ are given by 

ˆˆ( , )

ˆ ˆ( ) ( )ˆ[ ( )] ,
( ) ( )

T S t S t
S t

 
 

  
   

  
         and        

ˆˆ( , )

ˆ ˆ( ) ( )ˆ[ ( )] ,
( ) ( )

T H t H t
H t

 
 

  
   

  
 

Hence, the 1 1   )%00(   ACIs of ( )S t  and ( )H t , are given by 

2

ˆ1 2 ( )

ˆ ˆ( )
S t

S t z      and 2

ˆ1 2 ( )
ˆ ˆ( )

H t
H t z    

respectively.  

3. Bayesian Estimation  

In this section, Bayesian method is used to obtain the estimators for 

the unknown parameters of  extended exponential distribution  using 

squared error and LINEX loss functions  

We consider independent gamma priors for the parameters  and   

as 

   1 1, 0, , 0 an , 0,d , 0a b c d c de a b e                                                                               

then the joint priors distribution is  

1 1 ( )( , ) , 0, , , , 0,a c b de a b c d                                             (13) 
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Combining equation (13) with equation (6) and using Bayes 

theorem, the joint posterior distribution can be obtained as 

( ) ( ) ( ; , )
( , | )
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The Bayesian estimators of   and   of extended exponential 

distribution  under the squared error loss function is the mean of the 

posterior density function, given by 
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respectively. These estimators can be expressed a 
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and the form of reliability function and hazard function are given as the 

following equation, 
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respectively. 

Following Zellner (1986), the Bayes estimators under LINEX loss 

function are  
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respectively, where ( )E   denotes the posterior expectation. These 

estimators can be expressed as 
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respectively, and the form of reliability function and hazard function are 

given as, 
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Equations (15), (16), (17), (18), (19), (20), (21) and (22) in general 

cannot be obtained in a closed form, so the approximate methods is 

employed. MCMC using MH algorithm has been used to carry out the 

Bayes estimates and also to construct the associate HPD credible intervals. 

4. Simulated Results and Real Data Analysis 

The aim of this section is to compare the performance of the 

different methods of estimation discussed in the previous sections. A 

Monte Carlo study is employed to check the behavior of the proposed 

methods as well as to assess the statistical performances of the estimators 

under Type-II progressive hybrid. Also, a real data set is analyzed for 

illustrative purpose. R-statistical programming language will be used for 

calculation. 

4.1 Simulated Study 

In this section, we perform a Monte Carlo simulated study 1000 

times to compare the performance of different estimators of unknown 

parameters of the extended exponential distribution. We also assess the 

behavior of predictors of censored observations under the considered 

censoring scheme. The performance of different estimators is compared in 

terms of corresponding average estimates and mean square error (MSE) 

values. For this purpose, we generate Type-II progressive hybrid censored 

samples using various sampling schemes by considering different 

combinations of ( , )n r and assuming that T is either (0.63, 1.79). We used 

the R-statistical software for all computations. The MLEs of  and   are 

computed and the information matrix will be discussed to obtain 

asymptotic confidence intervals for the parameters and estimate reliability 

and hazard rate functions. Bayes estimates of parameters are computed 

with respect to a gamma prior distribution under squared error and LINEX 
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loss functions. Both MLEs and Bayes estimates of parameters are obtained 

for arbitrarily taken unknown parameters 1.5   and 0.5  . 

For the MLEs, one may generate 1000 data from the extended 

exponential distribution with the following assumptions: 

1. Assume the following selected cases of parameters of the extended 

exponential distribution: ( , ) (1.5,0.5)    . 

2. Sample sizes, are 50,100,200n   and number of observed failures 

20,40,80r  , respectively. 

3. Censoring times Type-II PHCS are assumed  corresponding to the 

selected quantiles  quantiles, where   The  

quantiles of lifetimes distribution is given by           :     

 

where  is the inverse of the cdf (quantile) of the given 

distribution. 

4. Removed items iR are assumed to as follows: 

Scheme I: 1R n r   and 2 ,..., 0rR R  .                     

Scheme II: 1

2

... 1rR R   and 
( 1)
2

... 2r rR R


 . 

Scheme III: 1 1,..., 0rR R    and rR n r  . 

Table 1. Removal patterns of units in various censoring schemes 

( , )n r  
Censoring Schemes 

I
 

II
 

III
 

(50,20) (30, 0
*19

) (1
*10

, 2
*10

) (0*
19

, 30) 

(100,40) (60, 0*
39

) (1
*20

, 2
*20

) (0*
39

, 60) 

(200,80) (120, 0*
79

) (1
*40

, 2
*40

) (0*
79

, 120) 

  Here, (1
*5

, 0), for example, means that the censoring scheme 

employed is (1, 1, 1, 1, 1, 0). 
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The values of hyper-parameters are chosen to satisfy the prior mean 

become the expected value of the corresponding parameter, one can assume 

the hyper-parameters as: 1.6, 1, 1a b c    and 1.5d  . These values, hyper 

parameters, are then plugged-in to calculate the desired estimates. While 

utilizing MH algorithm, the MLEs are taken into account as initial guess 

values, and the associated variance-covariance matrix 
(0) ˆˆ( ) (ln( ), ln( ))   . 

At the end, 2000 burn-in samples are discarded among the overall 10000 

samples generated from the posterior density, and subsequently obtained 

Bayes estimates and highest posterior density credible interval estimates. 

Further, we have also obtained the MLEs and Bayesian estimates of 

the reliability function and hazard function where the true values of ( )S t  

and ( )H t are taken form the specified time censoring, termination point of 

the test ( )max( , ))rT T x  , of Type-II progressive hybrid scheme. The true 

values of hazard function are  and 

 and the true values of reliability function are 

and . All the average 

estimates and associated MSEs for both methods are reported in Table (1.a) 

and Table (1.b). Further, the corresponding average interval lengths (AILs) 

and coverage probabilities (CPs) are reported in Table (2.a) and Table (2.b) 

for all the proposed confidence intervals, namely; asymptotic confidence 

interval (Asy-CI), HPD interval, and ACI for ˆ( )S t  and ˆ ( )H t . 
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Table (1.a): Average estimates values and MSEs of the ML and Bayes 

estimates based on Type-II progressive hybrid censoring schemes at 

different time censoring and different values of  for 

 

(  Method 
40%iq    80%iq   

I
 

II
 

III
 

I
 

II
 

III
 

 

 

2.7525 2.4499 2.2997 2.5906 2.5978 0.1386 

12.2799 12.9524 14.2271 9.6574 15.3345 2.1217 

 

0.6772 0.9701 1.1280 0.6790 0.8828 1.7169 

0.5743 1.3841 2.0412 0.5920 1.1739 2.9320 

 

2.0261 1.6667 1.5555 2.0208 1.7138 0.1164 

1.3482 1.3087 1.7610 1.1514 1.5766 1.9548 

 

0.5251 0.6894 0.7974 0.5099 0.6257 1.5380 

0.1535 0.3583 0.6537 0.1426 0.3144 1.9878 

 

1.9015 1.5036 1.4072 1.8946 1.5894 0.1130 

1.3720 0.7944 1.4972 1.2122 1.4045 1.9579 

 

0.4617 0.5905 0.6781 0.4499 0.5434 1.4354 

0.1003 0.2210 0.3939 0.0942 0.2016 1.5810 

 

 

2.4166 2.8080 2.5945 2.5289 2.2224 1.1463 

7.0952 14.5896 19.0184 9.2707 10.6330 2.2712 

 

0.5366 0.6835 1.0585 0.5436 0.7516 0.8966 

0.1725 0.4288 1.6447 0.1774 0.5236 0.4364 

 

2.0339 1.9069 1.8067 2.0794 1.8236 1.2241 

1.3979 1.2692 3.9895 1.5459 1.1268 0.5448 

 

0.4988 0.5685 0.8053 0.4817 0.6006 0.7502 

0.1036 0.2067 0.6762 0.0932 0.2217 0.2731 

 

1.9735 1.8679 1.6729 1.9984 1.6765 1.1365 

1.4760 1.7048 2.9964 1.6548 1.1132 0.5479 

 

0.4616 0.5101 0.7130 0.4450 0.5351 0.6867 

0.0780 0.1482 0.4829 0.0704 0.1540 0.2028 

 

 

2.0809 2.4660 2.5847 2.1042 2.3040 0.9412 

4.1238 10.6670 14.6691 3.3813 7.9377 0.4840 

 

0.5183 0.5960 0.7427 0.4964 0.6205 0.8313 

0.0915 0.1822 0.5887 0.0812 0.2331 0.2334 

 

1.9831 1.9811 1.9895 2.0124 2.0030 1.0807 

1.3706 1.6678 2.8323 1.4481 2.1565 0.3716 
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0.4920 0.5467 0.6513 0.4850 0.5595 0.7423 

0.0744 0.1276 0.4072 0.0764 0.1561 0.1717 

 

1.9240 1.8836 1.9193 1.9650 1.9295 1.0266 

1.3358 1.7406 3.0643 1.4645 2.0577 0.3958 

 

0.4692 0.5073 0.5952 0.4643 0.5181 0.6992 

0.0597 0.0964 0.3164 0.0618 0.1204 0.1373 

Note that:  

. 

True value of . 

True value of 

. 

Table (1.b): Average estimates values and MSEs of S(t) and H(t) for 

the MLE and Bayes estimates based Type-II progressive hybrid 

censoring schemes at different time censoring and different values of 

 for  

(  Method 
40%iq   80%iq   

I
 

II
 

III
 

I
 

II
 

III
 

 

 

0.9133 0.8768 0.6979 1.1734 0.8584 0.0333 

0.0530 0.0613 0.0563 0.2853 0.2943 0.9985 

 

0.5830 0.5851 0.6381 0.1909 0.2807 0.9078 

0.0076 0.0050 0.0042 0.0057 0.0188 0.5012 

 

1.0458 1.0356 0.8486 1.2920 1.0053 0.0335 

2.1195 0.4697 0.7496 0.3654 0.3486 0.9982 

 

0.5673 0.5559 0.6115 0.1775 0.2475 0.9098 

0.0115 0.0106 0.0092 0.0083 0.0169 0.5041 

 

0.7109 0.6374 0.5297 0.8520 0.6071 0.0326 

0.0555 0.0899 0.1319 0.1230 0.2381 1.0000 

 

0.6556 0.6772 0.7148 0.2855 0.3791 0.9129 

0.0087 0.0128 0.0174 0.0215 0.0512 0.5084 

 

 

0.8762 0.8847 0.7101 1.1000 0.9471 0.5882 

0.0228 0.0264 0.0450 0.0741 0.1895 0.2062 

 

0.5970 0.5894 0.6352 0.1970 0.2399 0.3311 

0.0036 0.0024 0.0033 0.0027 0.0090 0.0173 

 

0.9343 1.0798 0.8539 1.2008 1.1498 0.7007 
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0.1412 2.8310 0.3685 0.1492 0.2435 0.1383 

 

0.5846 0.5597 0.6045 0.1824 0.1984 0.2969 

0.0058 0.0077 0.0077 0.0046 0.0089 0.0114 

 

0.7666 0.7118 0.5850 0.9315 0.7670 0.5689 

0.0308 0.0557 0.0950 0.0580 0.1412 0.2221 

 

0.6354 0.6536 0.6912 0.2487 0.3046 0.3588 

0.0050 0.0085 0.0118 0.0089 0.0221 0.0258 

 

 

 

0.8671 0.8656 0.7359 1.0888 1.0482 0.5863 

0.0114 0.0132 0.0372 0.0358 0.1180 0.2035 

 

0.5990 0.5967 0.6355 0.1960 0.2089 0.3315 

0.0020 0.0013 0.0042 0.0014 0.0034 0.0174 

 

0.8911 0.9434 0.8292 1.1283 1.1658 0.6681 

0.0206 0.0376 0.0466 0.0476 0.1304 0.1475 

 

0.5931 0.5764 0.6091 0.1891 0.1832 0.3044 

0.0033 0.0034 0.0050 0.0021 0.0041 0.0120 

 

0.8077 0.7773 0.6444 1.0085 0.9136 0.5800 

0.0130 0.0223 0.0704 0.0268 0.0817 0.2094 

 

0.6202 0.6291 0.6739 0.2185 0.2508 0.3474 

0.0022 0.0028 0.0097 0.0021 0.0093 0.0220 

Note that: 

 . 

True value of . 

True value of   

. 

 

Table (2.a): The AILs and CPs (%) for the MLE and Bayes estimates 

based on Type-II progressive hybrid censoring schemes at different 

time censoring and different values of  for . 

(  Method 
40%iq   80%iq   

I
 

II
 

III
 

I
 

II
 

III
 

 

 

9.1712 9.2595 9.5357 8.2979 9.9734 1.1542 

94.8 94.8 93.4 94.9 93.5 98.9 

 

2.1222 3.0856 3.6467 2.1467 2.8715 4.0792 

95.6 94.5 94.2 95.0 94.5 94.5 

 

3.7734 2.9700 2.9965 3.4764 3.1222 0.2779 
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95.2 95.1 95.5 95.6 95.3 95.1 

 

1.1789 1.9162 2.4626 1.1578 1.7455 3.4487 

95.2 95.1 95.1 95.0 95.1 95.1 

 

3.6509 3.0679 3.1637 3.5704 3.4174 0.2620 

95.3 95.3 95.5 95.1 95.0 95.1 

 

1.0022 1.6061 2.0336 0.9686 1.4973 3.0657 

95.2 95.1 95.1 95.0 95.1 95.3 

 

 

7.3212 9.8467 10.8802 8.1486 8.4605 4.0190 

95.8 94.3 93.4 95.3 95.7 97.9 

 

1.3480 1.9165 3.3242 1.3651 2.0824 1.9326 

95.8 95.2 95.1 95.1 95.3 95.8 

 

3.6870 3.5416 3.7552 3.9321 3.3773 1.9021 

95.2 95.2 95.0 95.7 95.1 95.1 

 

1.0343 1.3655 2.4571 0.9843 1.4126 1.5944 

95.0 95.2 95.3 95.0 95.1 95.6 

 

3.7545 3.8874 4.1038 3.9482 3.3376 1.7681 

95.0 95.1 95.0 95.1 95.3 95.1 

 

0.9022 1.2017 2.1934 0.8690 1.2331 1.4097 

95.1 95.2 95.3 95.1 95.6 95.6 

 

 

5.8966 8.5846 9.7924 5.5099 7.5999 1.6257 

96.7 95.2 93.8 96.1 94.9 96.2 

 

1.1104 1.4118 2.1707 1.0552 1.5373 1.3786 

95.9 95.3 95.6 96.0 95.7 96.5 

 

3.4812 3.9154 4.5478 3.4315 4.2517 1.3138 

95.3 95.8 95.4 95.2 95.5 95.5 

 

0.9352 1.1593 1.9380 0.9192 1.1958 1.2235 

95.2 95.5 95.2 95.3 95.3 96.6 

 

3.4846 3.8216 5.1189 3.5248 4.2573 1.2102 

95.2 95.6 95.1 95.3 95.0 95.2 

 

0.8409 1.0486 1.7600 0.8295 1.1154 1.1366 

95.2 96.2 95.2 95.5 95.2 96.5 

Note that:  

. 

True value of . 

True value of 

. 
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Table (2.b): The AILs and CPs (%) of S(t) and H(t) for the MLE and 

Bayes estimates based on hybrid progressive Type-II censoring 

schemes at different time censoring and different values of  for 

. 

(  Method 
40%iq   80%iq   

I
 

II
 

III
 

I
 

II
 

III
 

 

 

1.5381 2.4760 4.2954 2.8372 4.5402 0.0330 

99.9 98.5 98.5 98.8 98.5 95.6 

 

0.5521 0.6646 1.3145 0.4871 1.7674 0.0495 

98.5 98.5 98.5 98.5 98.5 98.5 

 

1.2356 1.2299 1.0353 1.7932 1.8436 0.0393 

95.9 96.2 96.1 95.6 95.1 95.7 

 

0.3661 0.3263 0.3415 0.3175 0.4722 0.0522 

98.5 98.4 98.2 96.3 95.6 99.0 

 

0.7253 0.8868 0.5704 1.2873 0.9390 0.0376 

98.3 96.7 99.4 95.9 96.9 96.2 

 

0.2971 0.3686 0.2401 0.4206 0.4765 0.0487 

96.0 96.2 95.5 95.3 95.5 98.9 

 

 

0.8236 1.6193 2.7615 1.6640 4.1534 0.6568 

99.7 98.5 98.5 99.9 98.5 98.5 

 

0.3200 0.4574 0.8260 0.3286 1.2748 0.2109 

98.5 98.5 98.5 98.5 98.5 98.5 

 

0.7638 0.9671 0.9340 1.1168 1.5966 0.6488 

95.8 95.6 97.0 96.0 95.1 96.3 

 

0.2680 0.2735 0.3003 0.2481 0.3503 0.1649 

98.2 99.7 98.3 97.6 95.8 99.4 

 

0.5495 0.8683 0.5171 0.8330 1.0464 0.3262 

98.3 96.2 99.7 97.2 96.3 98.6 

 

0.2168 0.3505 0.2175 0.2375 0.4193 0.0901 

97.1 96.4 95.6 96.0 95.8 96.8 

 

 

0.5008 0.7601 2.4558 0.7671 2.6863 0.3771 

99.6 99.8 98.5 97.7 98.5 99.5 

 

0.2034 0.2266 0.8162 0.1601 0.5366 0.1191 

99.6 98.5 98.5 99.3 98.5 98.5 

 

0.5360 0.6172 0.9278 0.6959 1.2375 0.4261 

96.5 96.1 96.9 96.4 96.9 95.8 

 

0.2050 0.1985 0.3136 0.1739 0.2229 0.1146 
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98.3 99.8 95.6 98.5 96.8 98.7 

 

0.3889 0.4414 0.6060 0.5826 1.0210 0.2604 

96.8 97.0 99.4 96.9 96.6 96.7 

 

0.1612 0.1466 0.2498 0.1493 0.2329 0.0634 

97.5 96.5 95.8 97.4 95.5 97.1 

Note that: 

. 

True value of 

. 

True value of 

. 

 

3.2 Real Data Set. 

A real data set is analyzed for illustrative purpose as well as to assess 

the statistical performances of the MLEs and Bayes estimators for the 

extended exponential distribution under Type-II Progressive Hybrid 

censoring schemes. 

A real-life data set is analyzed to illustrate how the proposed 

methodology can be applied in real life phenomenon. We shall use the real-

life data set originally presented by Linhart and Zucchini (1986), which 

represents the failure times of the air conditioning system of an air-plane. 

The ordered data with n = 30 are as follows: 1, 3, 5, 7, 11, 11, 11, 12, 14, 

14, 14, 16, 16, 20, 21, 23, 42, 47, 52, 62, 71,71, 87, 90, 95, 120, 120, 225, 

246 and 261. Recently, this real data set was analyzed by Singh et al. 

(2015a,b). 

We first check whether the extended exponential distribution is 

suitable for analyzing this data set or not. The value of Kolmogorov–

Smirnov (K–S) test statistic is calculated to judge the goodness of fit. The 

calculated Kolmogorov-Smirnov (K-S) distance between the empirical and 

the fitted extended exponential distribution is 0.1992 and its p-value is 
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0.1847, which indicate that this distribution can be considered as an 

adequate model for the given data set. The MLEs of the parameters are 

obtained where ˆ 0.5339  and ˆ 0.0808  .  

From the original data, one can generate, three Type-II progressive 

hybrid censoring samples with number of stages 15r   at time censoring 

50T    and removed items iR  are assumed to as follows: 

Scheme I: 1R n r   and 2 ,..., 0rR R                                                 14(15,0 ) . 

Scheme II: 1

2

,..., 0, ( 1)
2

r

r
R R R n r     and ( 2),..., 0

2
r

r
R R  .   

7 7(0 ,15,0 )  . 

Scheme III: 1 1,..., 0rR R    and rR n r  .                               
14(0 ,15) .   

Table (3.a) and Table (3.b) give the MLEs of the parameters  and 

and calculated their associated asymptotic confidence interval at proposed 

schemes for Type II progressive hybrid censoring samples in the given real 

data set. Also, Bayes estimates under two loss functions; namely: squared 

error loss function and LINEX loss function, were computed by utilizing 

the MH algorithm under the Non-informative prior, i.e. 0a b c d    . It 

is indicated that, while generating samples from the posterior distribution 

utilizing the MH algorithm, initial values of ( , )   are considered as  
(0) (0) ˆˆ( , ) ( , )     where ˆˆ,   are the MLEs of the parameters ( , )   

respectively. Finally, discarded 2000 burn-in samples among the total 

10000 samples created from the posterior density, and subsequently 

obtained Bayes estimates and HPD interval. Further, the estimates of the of 

S(t) and H(t) are obtained in case of MLEs and Bayesian estimates at a 

specified time censoring . 
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Table (3.a): ML, Bayesian, and standard errors for real data set based 

on Type- II progressive hybrid censoring under various censoring 

schemes 

* St.E – Standard error . 

Scheme Parameter 
MLE SE LINEX 

Estimate St.E* Estimate St.E Estimate St.E 

I 

 

 
 

 

 

0.5549 

0.0381 

0.2362 

0.0346 

0.4806 

0.0539 

0.0131 

0.0005 

0.4678 

0.0534 

0.0133 

0.0004 

0.0005 

0.9592 

--- 

--- 

0.0131 

0.4170 

--- 

--- 

0.0125 

0.4324 

--- 

--- 

II 

 

 
 

 

 

0.5172 

0.0466 

0.2108 

0.0362 

1.0179 

0.0137 

0.0967 

3.64 e-5 

0.9316 

0.0137 

0.1041 

3.62 e-5 

0.0006 

0.9439 

--- 

--- 

0.0141 

0.4940 

--- 

--- 

0.0123 

0.5336 

--- 

--- 

III 

 

 
 

 

 

2.3726 

0.0092 

4.8814 

0.0217 

1.8933 

0.0124 

0.07445 

1.32e-05 

1.8181 

0.0124 

0.0801 

1.31e-05 

5.88e-05 

0.9964 

--- 

--- 

0.0362 

0.2234 

--- 

--- 

0.0335 

0.2447 

--- 

--- 

Scheme Parameter 
MLE SE LINEX 

Estimate St.E* Estimate St.E Estimate St.E 

I 

 

 
 

 

 

0.5549 

0.0381 

0.2362 

0.0346 

0.4806 

0.0539 

0.0131 

0.0005 

0.4678 

0.0534 

0.0133 

0.0004 

0.0005 

0.9592 

--- 

--- 

0.0131 

0.4170 

--- 

--- 

0.0125 

0.4324 

--- 

--- 

II 

 

 
 

 

 

0.5172 

0.0466 

0.2108 

0.0362 

1.0179 

0.0137 

0.0967 

3.64 e-5 

0.9316 

0.0137 

0.1041 

3.62 e-5 

0.0006 

0.9439 

--- 

--- 

0.0141 

0.4940 

--- 

--- 

0.0123 

0.5336 

--- 

--- 

III 

 

 
 

 

 

2.3726 

0.0092 

4.8814 

0.0217 

1.8933 

0.0124 

0.07445 

1.32e-05 

1.8181 

0.0124 

0.0801 

1.31e-05 

5.88e-05 

0.9964 

--- 

--- 

0.0362 

0.2234 

--- 

--- 

0.0335 

0.2447 

--- 

--- 
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Table (3.b): Associated interval estimates for ML and Bayesian for real 

data set based on Type II progressive hybrid censoring under various 

censoring schemes  

Scheme Parameter Asy-CI MLE* HPD Bayes SE HPD Bayes LINEX 

I 

 

 
 

 

 

(0.2701, 2.3603) 

(0.0037, 0.2061) 

(0.2732, 0.7144) 

(0.0236, 0.0963) 

(0.2702, 0.7145) 

(0.0233, 0.0971) 

(0.0000, 0.0067) 

(0.5061, 1.4123) 

(0.0014, 0.0248) 

(0.2169, 0.6170) 

(0.0010, 0.0240) 

(0.2274, 0.6375) 

II 

 

 
 

 

 

(0.2397, 1.4941) 

(0.0076, 0.2138) 

 

(0.4960, 1.6629) 

(0.0054, 0.0266) 
 

(0.4958, 1.6631) 

(0.0050, 0.0268) 

 

(0.0000, 0.0068) 

(0.4920, 1.3958) 

(0.0000, 0.0797) 

(0.0000, 2.1319) 

(0.0000, 0.0670) 

(0.0000, 2.0676) 

III 

 

 
 

 

 

(0.0000, 6.5421) 

(0.0000, 0.0304) 

 

(1.3995, 2.3769) 

(0.0062, 0.0201) 
 

(1.3980, 2.3762) 

(0.0064, 0.0203) 

 

(0.0000, 0.0608) 

(0.000, 4.6228) 

(0.0000, 0.2218) 

(0.0000, 1.4292) 

(0.0000, 0.2151) 

(0.0000, 1.5718) 

*  Asy CI- Asymptotic confidence interval. 

The convergence of MCMC estimation in case of scheme I of Type-

II progressive hybrid censoring can be showed for and  in Figure (1)  

 

Figure (1) : Convergence of MCMC estimators for and  using MH 

algorithm 



189 
 

5. Concluding Remarks 

In this article, The estimation of the unknown parameters and 

reliability and hazard functions of an extended exponential distribution 

under Type-II PHCS is considered. Different estimates for the unknown 

parameters using ML and Bayesian approaches are computed. The 

asymptotic confidence intervals are also constructed. Bayes estimates of 

unknown parameters are developed using MH algorithm with respect to 

gamma prior distributions under SE and LINEX loss functions. HPD 

intervals based on MH procedure are considered. A real data set and 

simulation study was conducted to examine and compare the performance 

of the proposed methods for different; sample sizes, censoring times and 

censoring schemes.  

      From the results of simulation study we reported some comments 

observed from numerical results. 

 When n  is increasing: the bias and MSE of the MLE estimate of 𝛼 is 

decreasing at Scheme I but increasing at Scheme II and Scheme III 

but the bias of the MLE estimate of   is decreasing at all schemes of 

removing item. Also, the bias and MSE of the Bayes estimate of   

under the loss functions SE and LINEX is decreasing at all schemes 

of removing and the bias and MSE of the Bayes estimate of  under 

the loss functions SE and LINEX is decreasing at all schemes of 

removing item.  

 When T  is increasing: the bias and MSE of the MLE estimate of   

and   is decreasing at all schemes of removing item. But, the bias 

and MSE of the Bayes estimate of   and  under the loss functions 

SE and LINEX is increasing at all schemes of removing.  

 The average interval lengths and associated coverage probabilities of 

highest posterior density credible intervals are better than those of 

SE loss function and the MLEs. 
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 For the estimates of S (t) and H (t), it is notice that the MLEs is 

better than the Bayes estimates under two error loss functions. 

 The performance of the estimates in Scheme II  is better than other 

two schemes. 

From the results of real data we reported some comments observed from 

numerical results. 

 The performance of Bayes estimates for the parameters  and  

obtained under squared error loss function is better than the 

performance of Bayes estimates obtained under LINEX loss function 

and the MLEs.  

 For the estimates of S(t) and H(t), it is notice that the MLEs is better 

than the Bayes estimates under two error loss functions. 

 Furthermore, the performance of the estimates in scheme I  is better 

than other two schemes ( III  and II ). 
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