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Abstract

The estimating problems of the model parameters, reliability and
hazard functions of extended exponential distribution used Type-Ili
progressive hybrid censoring scheme (Type-1I PHCS) will be considered.
The maximum likelihood estimation (MLE) has been obtained for any
function of the model parameters. Based on the normality property of the
classical estimators, approximate confidence intervals (ACIs) for the
unknown parameters and any function of them are constructed. Further,
construct the asymptotic confidence interval of the reliability and hazard
rate function. Using independent gamma priors, the Bayes estimators of the
unknown parameters are derived based on both the symmetric (squared
error (SE)) and asymmetric (LINEX) loss functions. Since the Bayes
estimators are obtained in a complex form therefore, Markov Chain Monte
Carlo (MCMC) using Metropolis-Hastings (MH) algorithm has been used
to carry out the Bayes estimates and also to construct the associate highest
posterior density credible intervals. To evaluate the performance of the
proposed methods, a Monte Carlo simulation study is carried out. Finally,
we consider engineering data to illustrate the applicability of the methods

covered in the paper.
Keywords: Extended exponential distribution; Reliability and hazard rate

functions;  Bayesian and non-Bayesian estimation; MCMC; Type-lII

progressive hybrid censoring.
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1. Introduction

A new generalization of the exponential distribution as an alternative
to gamma, Weibull and generalized-exponential lifetime models has been
introduced by Nadarajah and Haghighi (2011). The extension of the
exponential distribution was named NHD by Lemonte (2013) as an
abbreviation for the name authors Nadarajah and Haghighi. Also, many
properties of extended exponential distribution are discussed by Nadarajah
and Haghighi (2011). Suppose that the lifetime X of a testing unit follows
two-parameter extended exponential distribution (e, 4). The probability

density function f (), cumulative distribution function F(), reliability

function s () and hazard rate function H (), for given mission time t , are

given by
f (x)=al@+Ax)* exp@d— @1+ Ax)%) x>0, a,A>0, (1)
F(x)=1—exp(l— 1+ Ax)%) x>0, a,4>0, (2)
S(t; o, A) =exp(l—(1+At)%) 't>0), (3)
and

H(t:a, A) = aA(l+ At)* £ >0 (4)

respectively, where « and 1 are the shape and scale parameters,

respectively.

Recently, many studies on estimating the unknown parameters of
extended exponential distribution based on different life-testing
experiments have been carried out by many authors. Singh et al. (2015a)
obtained the MLE and Bayes estimators of the extended exponential
distribution under Type-Il progressive censoring scheme (Type-Il1 PCS).
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Singh et al. (2015b) discussed the MLEs and Bayes estimators of the
unknown parameters and reliability characteristics of the extended
exponential distribution based on complete sampling.. Sanku et al. (2017)
introduced a comparisons between several methods for estimating the
unknown parameters of extended exponential distribution. Sana and Faizan
(2019) discussed MLE and Bayes estimation of the two unknown
parameters of extended exponential distribution based on record values.
Ashour et al. (2020) obtained The MLE and Bayes inferential approaches
for estimating the unknown two parameters and some lifetime parameters
such as reliability and hazard rate functions of extended exponential
distribution in presence of progressive first-failure censored sampling. Wu,
M. and Gui, W. (2021) obtained estimation and prediction for extended
exponential distribution under progressive Type-II censoring.

In conventional Type-l and Type-ll censoring, a life test is
terminated at a prescribed time span or at a predefined number of failures.
The main drawback of these censoring schemes is, the units cannot be
removed from the test at any time point except the final closure point.
However, the Type-Il PCS gives the flexibility of eliminating the test units
before the final termination. On other hand, the major drawback of the
Type-Il PCS is that, it can take a lot of time to reach the final termination
point (Childs et al. (2008)). They introduced Type-Il progressive hybrid
censoring scheme (Type-ll PHCS). Type-ll PHCS involves the

termination of the life test at time T'=max(x,,T). Let D denote the
number of failures that occur before time T, if x,>7, the experiment

would terminate at the r™ failure, with the withdrawal of units

occurring after each failure according to the pre-fixed progressive
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censoring scheme R,R,...R. .However, if x<T, then instead of
terminating the experiment by removing all remaining R, units after the
r™ failure, the experiment would continue to observe failures without any
further withdrawals up to time 1 | Thus, in this case R, =R, ,=..R, =0 .

Based on the above Type-Il PHCS ,the observed date will be one of

the following two form;

11X gy <X ) <X ) it X, 2T,

Case
X gy <o <Xy <X gy <o <X

(r)

if X, <T.

(D) (r)

The likelihood function of the observed data (without constant term) is

given by

([ TF ()@-F )™, for case |

L(x;0) o (5)
(LT &X)a-FOe )X (xDA-F )%, forcasel

i=r+l

where R/ is the number of remaining units left at the time point T for case

Il. This procedure is guarantees that the life test would yield at last r
complete failure times.

For more details and some recent references on progressive hybrid
censoring schemes, see Kundu and Joarder (2006), Lin et al. (2009),
Joarder et al. (2009), Bayat Mokhtari et al. (2011), Hemmati and Khorram
(2013), Gurunlu Alma and Arabi Belaghi. (2016) and Kayal et al. (2017).

The aim of this paper is the estimation of the unknown parameters,
hazard rate and reliability functions of extended exponential distribution
under Type-Il PHCS .In section 2, The MLEs and the information matrix
will be discussed to obtain asymptotic confidence intervals for the
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parameters and estimate reliability and hazard rate functions. Further,
Bayesian estimation under the assumption of independent gamma priors
using SE and LINEX loss functions will be discussed in section 3.
Numerically proposed methods using Monte Carlo simulations and a real
data set is compared in Section 4. Finally a conclusion is given in Section 5.
2. Maximum Likelihood Estimation

In this section, maximum likelihood estimation and its information
matrix for the unknown parameters of the extended exponential distribution

(1) will be obtained using Type Il progressive hybrid censoring (5).

The likelihood function is given by

r
[Tar@+ax ) e 0 @ (1-e >0y for case |
i=1

L(x;a,A) =1 [ [ad@+Ax4,) e 0 a—@—e @ @0 forcase Il (6)

i=1

D
H a/l(l+/1x (i))a—le(l—(l‘*'lx(i)) )(1_(1_6(1—(1+Z.T )“)))RD

i=r+l

Taking natural logarithm, we get

rina+rini+(@-10> In(l+Ax )+
i=1
D@ @+ Ax;))*) +R,; In@—(@1—e“ @07y for case |

i=1

rina+rinA+(@-10> In(l+Ax )+
InL(x;a,A)= i1

(7)

Zr:(l—(l+ AX N +R; (A @A+ A% 4))%)

+DIna+DInA+(a-1)In D @+2x,)

i=r+l1

+ i L=+ Ax ;)N +R5(A- @+ AT )*)) forcase

i=r+l
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Differentiating InL(x;a, 4) partially with respect to « and 4, we get

the following two equations.

L SIn@+ Ax ) = > @+ Ax 4,)* In(L+ A )
o i i=1

1+R;) for case |
oIl xia4) L+Zln(1+/1x(i))—Z(1+/1x(i))“ IN(L+ AX 5, )[1+R; ]
oo a = = (8)
D D o
+;+i;l|n(1+,1x(i)) I;l(1+zx(,)) IN(@+ AX ;)
—R @+ AT )" In(1+ AT ) for case 1l
and
—+(a 1)21+,1 —aizzl“x(i)(uzx(i))“-l
1+R;] for case |
aInL(x;a,;L) i) - a
= —+ a—1 —a) X, \Q+Ax,.\) T [1+R,
8), ( )214-2. o ; (|)( (|)) [ |] (9)
D
+—+ a-1 © o> x @+ Ax,,)t
( ),;11+i i;+1 (I)( (I))
—Ral @+ AT )*™ for case Il

Since these equations after equating them to zero are clearly

transcendental equations in ¢ and Athat is, no closed form solutions are
known they must be solved by iterative numerical techniques to provide

solutions (estimates), & and 1, in the desired degree of accuracy.

If ¢ and 4 are the MLEs of the parameters then by using the
invariance properties, the MLEs of hazard rate function and survival
function are given by, respectively.

H (x)=aA+it)*? (10)
and

§(X )=e @-+it)%) (1 1)

169



To study the variation of the MLEs 4 and A, the asymptotic

variance of these estimators are obtained. The asymptotic variance

A

covariance matrix of , ¢ and A, is obtained by inverting the information
matrix with elements that are negative expected values of the second order
derivatives of natural logarithms of the likelihood function, for sufficiently
large samples, a reasonable approximation to the asymptotic variance

covariance matrix of the estimators can be obtained as

L d) 8 InL(x;a,A) N

A 2 Var(d) Cov (4,4
e dyz| o | dda | Var@  Covlad) o)
O InL(x;a,4) 9 InL(x;a,4) Cov(a,A) Var(4)
8/1804 6/12 (@.4)

The elements of the previous sample information matrix can be

obtained such that

- < a
pp (IN@+ 2% 4,))? A+ Ax ;) [1+R; ] for case |

FIL(GaR) ;—2— (In(1+ A% )21+ AX ) )“[1+ R, ]

aaz i=1 1
D_% IN@L+ A% ;))° L+ AX ;)
—?—_:Zl(n( +AX)))" (L+ X ;)
—R. @+ AT )“[In@+ AT ) for case I
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~la- )Z(l+/1x(,))

a(a—l)zr:x(ﬁ)(lwlx i) AR ] for case |
d '”Lﬁ%“'ﬂ) ~(a- )2(1 z(;()()) —a(a—1)Zx(2i)(l+}tx(i))“‘2[1+Ri]
_____-__( - )lzg;l(l )IX( )) __CZ((Z l)ljg;lX(l)Cl4_/1X(l))a 2
R} [a(a =T 2@+ AT )*?] for case Il
and
X -1
Sty Sommas i
(aIn(+Ax;,) +DA+R;] for case |
X

r ) r a-1
— > X @+ AX
82 In L-(ZS;(Z,/i) _ 82 In L-(z&;CX,/l) _ ;g; Cl{_)lx(i)) :g; (I)( 0))

1o B dadA

(In(L+Ax ;) +DL+R; 1+ Z —(1 ;i')z )
i=r+l (i)

D
=D Xy @+ A% ) Ha In(@+ A ) +1) -

i=r+l

RO @+ AT )**[e In(L+ AT ) +1]for case II

Diagonal elements of 1*(4,1) provides the asymptotic variance of

a and A  respectively. Then using large sample theory a two sided
100(1- B)% approximate confidence interval for « can be constructed as

atz, ,,./var(a) and similarly, for ithe two sided 100(1- 3 )% approximate

confidence interval can be obtained as A+z, ,,\var(i).
To construct the ACIs of s() and H (), The variances of them is
needed Therefore, the delta method is considered to obtain the approximate

estimates of the variance of S(t) and H (). Delta method is a general
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approach for computing ACls for any function of the MLEs ¢ and 4, (See
Greene (2012)). According to this method, the variance of S(t) and H (),

can be approximated, by

62, =IVSOT I'vs®]  and &5 =[VH O] I,'[VH ()]

respectively, where the gradient vector of first partial derivatives of S(t)

and H (t) with respectto o and 4 obtained at ¢ and A are given by

OVS (t) oVS (t)
o) ' o)

V=] { o) o)

} and vH OF :{8VH t) oVH (t)}
(a,4) (é.,4)

Hence, the 1001- B )% ACIs of S(t) and H (t), are given by

A A D A A2
St)+z, 4, /ag(t) and Ht)+z, ,, /aﬁm

respectively.
3. Bayesian Estimation

In this section, Bayesian method is used to obtain the estimators for
the unknown parameters of extended exponential distribution using
squared error and LINEX loss functions

We consider independent gamma priors for the parametersa and A4
as
m(a)ca®®™  a>0ab>0 and 7(A)cAe ™ ,2>00c,d>0

then the joint priors distribution is

7(a, A) oc a® A e Petd A A,a>0ab,c,d >0, (13)
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(e, A1X) =

distribution

Combining equation (13) with equation (6) and using Bayes

theorem, the joint posterior distribution can be obtained as

@Al Ead)
J‘Iﬁ(a)%(ﬁ)L(&a,i) dAda

1 aict. (pasdn)T- 1 @@ Ax)))
— a1 e (ba+ l)Haﬂ(l_*_lX(i))a 1o A
YV, i=1

x (L (1—e T E IR for case |
1 L A% ) CLAx, )
—aa_lftc_le_(b““)l_[a/t(l+/IX (i))a—le(l (1+A%iy) )(1—(1—6(1 (1+Axiy) )))Ri
vV, i-1

D
[T aA@+ax ) e™ S0 - @-e -ty for case I

i=r+l

where

(14)

o0 00 r
W, = J’J‘aa—lic—le—(ba+dl)Hal(1+lx(i))a—le (1-(1+2xiy) )(1_(1_8(1—(1+/1X(i)) )))Rid 2d o
00 i=1

and

}

-1 4¢-1 4 —(ba+d a1, (=(1+Ax))%) Q-+ 2% ) IR,

v, =[5 e O ad(t+ Ax )T O (1 (e O )R
a A i=1

D
[T ar@+ax ;) e =07 (- (1-e @ ETV))Red 4d 2

i=r+l

The Bayesian estimators of « and 4 of extended exponential

posterior density function, given by

e :J’aﬂ'(a,/ﬂ)i) da and

Je = [An(a,Alx) dA
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respectively. These estimators can be expressed a

Qe =

and

1 4 L 1@ (Axgy)*
I aA° 1e (bar+d 2) aﬂ(l-l—ﬂx _ )a le( (L+2%())%)
ll (i)
i=1

2 Vs
x (1= (1—e " TR g for case | )
r . . 15
J'iaa/lc—le—(baer/l)Ha/l(l_i_ﬂx (i))a—le Q-(+Axg) )(l_(l_e(l—(hix(i)) )))R.
2V i1
D
[T ar@+ax ;) e 207 - (@1-e® M) dg forcase Il
i=r+l
Iiaa_lﬂc e—(ba+di)HaA/(l+ﬂ/X (i))a—le (A-(T+2%(y)*)
wWs i1
x(1-(@L-e® PO gy for case |
(16)

1 ! - ) - )R,
J'_aa—l/lc e—(ba+dﬂ)Ha/1(1+/1X (i))a—le(l 12X 5y) )(1—(1—6(1 (142X (i) )))R.
2V i=1

D
[T ar@+ax ;) e >0 - (1-e @))% d 4 for case I

i=r+l

and the form of reliability function and hazard function are given as the

following equation,

_ N L e e
J‘J‘e(l (1+4x) )_aa 1yclg (ba+dz)Ha/1(1+lx(i))a 1e(1 L+2%y))
ai Vs i1

x(1—(L—e®E#INR g ad o for case |

SN(t)SE - J.J.e(lf(lwlx)a)iaa—l/lc—lef(baerﬂ)Hal(l_'_AX m)‘“e (-1 Ax))%) (17)
i=1

and

) Y,
% (1_ (1_e (1_(1+;~X(i))a)))Ri

D
[T ar@+ax ;) e 07 @ - (1-e* )% d 4d o for case I

i=r+l
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IIOM(ZH—?LX )a—liaa—lﬂc—le—(ba+d/1)Ha/1(1+;tX(i))a_le(l-(1+/1x(i))a)
a l 4

3 i
x(1—(L—e® ™ ONR g ad o for case |

H (0)se =1 [+ ax )“‘1iaa-lz°-le-<b“+d*>]ija,1(1+ AX gy) e (18)

h x (1= (1—e O IyyR

f[ QAL+ X 4, ) e O (1 (1 e EETIN)Re g ad o for case I

i=r+l

respectively.

Following Zellner (1986), the Bayes estimators under LINEX loss

function are

6ZLINEX

= Ci In(E (e°%)) and

j’LINEX = Ci* In(E (eic%))

respectively, where E (-) denotes the posterior expectation. These

estimators can be expressed as

—In e a 12/0—1 —(ba+d 1) aﬂ/ 1+1X a—le (A-(@+Axy)*)
(i)

x (1— (1—e(1’(1*““’) "M da forcase |

dLINEX = —Inje a*ac 1e7(ba+di)H0M.(l+ﬂX )afle(lf(lJrix(i))a) (19)

% (1_ (l—e -+ ))” )))Ri

D
[T ar@+ax ) e =207 A- (@-e @ E))% d o for case II

i=r+l
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and

A’LINEX =

1 B r 4 e

“Inle c ﬂ._aa 1ﬂc 1e (ba+dl)Haﬂ(1+lX _ )a 1e(l (1+2%1))%)
* W (i)

A 3 i=1

x(1—(L—e "R g 4 forcase |

1 R R d (- )
In e c'A aa 12,‘: 1e (ba+d 2) 05/1(1+/1x ) )a 1e(1 L+ ))*)
* v I l (i)
p) 4 i=1

% (1_ (1_e (A-(1+Ax ))a)))R,

D
[T er@+ax ) e @-(@-e ™M) d 4 forcase Il

i=r+l

(20)

respectively, and the form of reliability function and hazard function are

(22)

given as,
1 g 1 a-14c-1,-(ba+d ) : a-1, L-(1+2%)%)
—*In”e —a* e [Ter@+ax,,) e
c a i Vs i=1
x(1—1—e O N g 1d o for case |
ot 1 o (- (1+Ax)* 1 r (11X )
S (t)uNEx — _*Injj'e—c o () )—aa_lﬂ,c_le_(baeri)Haﬁ(l‘i‘ﬂX(i))a_le(l (T+2x3))*) (21)
c al Y, i=1
X(1_(1_6(1—(1+4X(i))a)))Ri
D
[T A+ ax,,) e 0 @ 1-e M) d Ad o for case Il
i=r+l
and
1 . o1 r ey
—*In”e’° aA(14X) _aa—lic—le—(bam}b)Haﬂy(l_i_ix (i))a—le(l (1+2%y)%)
c 23 Vs i=1
x (1= (1—e T HONR g ad o for case |
~ 1 * -1 1 r (1A%, )
H (t)uNEx _ _*Inj“[e—c aA(14X) _aa—lﬂc—le—(baer/i)Hal(l_i_ﬂx (i))a—le (1-(+Axy)*)
cC 23 WV, i=1
X(l_(1_e(1*(1+ix<i))a)))Ri
D
[T A+ ax ) e &0 - 1-e @*))% d 4d o« for case Il
i=r+l
respectively.
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Equations (15), (16), (17), (18), (19), (20), (21) and (22) in general
cannot be obtained in a closed form, so the approximate methods is
employed. MCMC using MH algorithm has been used to carry out the
Bayes estimates and also to construct the associate HPD credible intervals.

4. Simulated Results and Real Data Analysis

The aim of this section is to compare the performance of the
different methods of estimation discussed in the previous sections. A
Monte Carlo study is employed to check the behavior of the proposed
methods as well as to assess the statistical performances of the estimators
under Type-Il progressive hybrid. Also, a real data set is analyzed for
illustrative purpose. R-statistical programming language will be used for
calculation.

4.1 Simulated Study

In this section, we perform a Monte Carlo simulated study 1000
times to compare the performance of different estimators of unknown
parameters of the extended exponential distribution. We also assess the
behavior of predictors of censored observations under the considered
censoring scheme. The performance of different estimators is compared in
terms of corresponding average estimates and mean square error (MSE)
values. For this purpose, we generate Type-Il progressive hybrid censored
samples wusing various sampling schemes by considering different
combinations of (") and assuming that T is either (0.63, 1.79). We used
the R-statistical software for all computations. The MLEs of @and 4 are
computed and the information matrix will be discussed to obtain
asymptotic confidence intervals for the parameters and estimate reliability
and hazard rate functions. Bayes estimates of parameters are computed
with respect to a gamma prior distribution under squared error and LINEX
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loss functions. Both MLEs and Bayes estimates of parameters are obtained
for arbitrarily taken unknown parameters @ =1.5 and4=0.5,
For the MLEs, one may generate 1000 data from the extended
exponential distribution with the following assumptions:
1. Assume the following selected cases of parameters of the extended
exponential distribution: (a, 1) =(1.5,0.5) .
2. Sample sizes, are n=50,100,200 and number of observed failures
r =20,40,80, respectively.

3. Censoring times Type-Il PHCS are assumed T, corresponding to the

selected quantiles g** quantiles, where g = (40%,80%). The g*"
quantiles of lifetimes distribution is given by

P(Xx=T,)=q = T,=0Q(q)
where @(.) is the inverse of the cdf (quantile) of the given
distribution.

4. Removed items R, are assumed to as follows:

Scheme I: R,=n-r and R,,..,R, =0.

r

R, =2.

r r

—+1
>t

Scheme II: R,..R, =1 and R(

2
Scheme Ill: R,,..,R,,;=0and R, =n-r.

Table 1. Removal patterns of units in various censoring schemes

(n.r) Censoring Schemes
’ | I I
(50’20) (30’ 0*19) (1*10’ 2*10) (0*19’ 30)
(100,40) (60, 0%9) (170, 2720 (0**, 60)
(200,80) (120, 0*") (170, 279 (0%7°, 120)

Here, (17, 0), for example, means that the censoring scheme
employedis (1,1,1,1, 1, 0).

178



The values of hyper-parameters are chosen to satisfy the prior mean
become the expected value of the corresponding parameter, one can assume
the hyper-parameters as:a=1.6,o=1c=1 and d =15. These values, hyper
parameters, are then plugged-in to calculate the desired estimates. While
utilizing MH algorithm, the MLEs are taken into account as initial guess
values, and the associated variance-covariance matrix (6°)=(In(q),In(1)).
At the end, 2000 burn-in samples are discarded among the overall 10000
samples generated from the posterior density, and subsequently obtained
Bayes estimates and highest posterior density credible interval estimates.

Further, we have also obtained the MLEs and Bayesian estimates of
the reliability function and hazard function where the true values of S (t)
and H (t)are taken form the specified time censoring, termination point of
the test T"=max(T ,x,)), of Type-Il progressive hybrid scheme. The true
values of hazard function are hk(t=0.63,a,1) =0.8606 and
h(t =1.79,a,4) = 1.0325 and the true values of reliability function are
S(t =063,a 1) = 06000and S(t=179,a 1) =02000. All the average

estimates and associated MSEs for both methods are reported in Table (1.a)
and Table (1.b). Further, the corresponding average interval lengths (AILS)
and coverage probabilities (CPs) are reported in Table (2.a) and Table (2.b)
for all the proposed confidence intervals, namely; asymptotic confidence
interval (Asy-Cl), HPD interval, and ACI for S(t) and H (t).
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Table (1.a): Average estimates values and MSEs of the ML and Bayes

estimates based on Type-Il progressive hybrid censoring schemes at

different time censoring and different values of (nr) for
a=151=0.5
g, =40% 0, =80%
() Method
| I 11 | Il 11
MLE 2.7525 | 2.4499 | 2.2997 | 2.5906 | 2.5978 | 0.1386
« 12.2799 | 12.9524 | 14.2271 | 9.6574 |15.3345| 2.1217
MLE 0.6772 | 0.9701 | 1.1280 | 0.6790 | 0.8828 | 1.7169
A 0.5743 | 1.3841 | 2.0412 | 0.5920 | 1.1739 | 2.9320
Baves SE 2.0261 | 1.6667 | 1.5555 | 2.0208 | 1.7138 | 0.1164
(50,20) ’ * 1.3482 | 1.3087 | 1.7610 | 1.1514 | 1.5766 | 1.9548
' Baves SE 0.5251 | 0.6894 | 0.7974 | 0.5099 | 0.6257 | 1.5380
ot 0.1535 | 0.3583 | 0.6537 | 0.1426 | 0.3144 | 1.9878
1.9015 | 1.5036 | 1.4072 | 1.8946 | 1.5894 | 0.1130
Bayes LINEX,,
’ 1.3720 | 0.7944 | 1.4972 | 1.2122 | 1.4045 | 1.9579
0.4617 | 0.5905 | 0.6781 | 0.4499 | 0.5434 | 1.4354
Bayes LINEX;
’ 0.1003 | 0.2210 | 0.3939 | 0.0942 | 0.2016 | 1.5810
MLE 24166 | 2.8080 | 2.5945 | 2.5289 | 2.2224 | 1.1463
“ 7.0952 | 14.5896 | 19.0184 | 9.2707 | 10.6330 | 2.2712
MLE 0.5366 | 0.6835 | 1.0585 | 0.5436 | 0.7516 | 0.8966
A 0.1725 | 0.4288 | 1.6447 | 0.1774 | 0.5236 | 0.4364
Baves SE 2.0339 | 1.9069 | 1.8067 | 2.0794 | 1.8236 | 1.2241
(100,40) ; "‘ 1.3979 | 1.2692 | 3.9895 | 1.5459 | 1.1268 | 0.5448
' Baves SE; 0.4988 | 0.5685 | 0.8053 | 0.4817 | 0.6006 | 0.7502
U 0.1036 | 0.2067 | 0.6762 | 0.0932 | 0.2217 | 0.2731
1.9735 | 1.8679 | 1.6729 | 1.9984 | 1.6765 | 1.1365
Bayes LINEX,,
’ 1.4760 | 1.7048 | 2.9964 | 1.6548 | 1.1132 | 0.5479
0.4616 | 0.5101 | 0.7130 | 0.4450 | 0.5351 | 0.6867
Bayes LINEX;
’ 0.0780 | 0.1482 | 0.4829 | 0.0704 | 0.1540 | 0.2028
MLE 2.0809 | 2.4660 | 2.5847 | 2.1042 | 2.3040 | 0.9412
* 41238 | 10.6670 | 14.6691 | 3.3813 | 7.9377 | 0.4840
(200,80) MLE, 0.5183 | 0.5960 | 0.7427 | 0.4964 | 0.6205 | 0.8313
0.0915 | 0.1822 | 0.5887 | 0.0812 | 0.2331 | 0.2334
Baves SE 1.9831 | 1.9811 | 1.9895 | 2.0124 | 2.0030 | 1.0807
’ "‘ 1.3706 | 1.6678 | 2.8323 | 1.4481 | 2.1565 | 0.3716
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0.4920 | 0.5467 | 0.6513 | 0.4850 | 0.5595 | 0.7423
0.0744 | 0.1276 | 0.4072 | 0.0764 | 0.1561 | 0.1717
1.9240 | 1.8836 | 1.9193 | 1.9650 | 1.9295 | 1.0266
1.3358 | 1.7406 | 3.0643 | 1.4645 | 2.0577 | 0.3958
0.4692 | 0.5073 | 0.5952 | 0.4643 | 0.5181 | 0.6992
0.0597 | 0.0964 | 0.3164 | 0.0618 | 0.1204 | 0.1373

Bayes 5E;

Bayes LINEX,,

Bayes LINEX;

Note that:

To=aos = Q(40%, @ = 1.5,1 = 0.5) = 0.6334 & T,_gps = @(80%, a = 1.5,1 = 0.5) = 1.7908,

True value of r(t = 0.6334, & = 1.5, 1 = 0.5) = 0.8606 & h(t = 1.7908,a = 15,4 = 0.5) = 1.0325.
True value of

5(t = 0.6334,¢ = 1.5,4 = 0.5) = 0.6000 & 5(t = 1.7908,« = 1.5,4 = 0.5) = 0.2000.

Table (1.b): Average estimates values and MSEs of S(t) and H(t) for
the MLE and Bayes estimates based Type-1l1 progressive hybrid
censoring schemes at different time censoring and different values of

(n, 1) fora=1.541=0.5

q, = 40% q;, =80%
(n,7) Method
| 1 11 | | 11
MLE.. 0.9133 0.8768 0.6979 1.1734 | 0.8584 | 0.0333
Rie) 0.0530 0.0613 0.0563 0.2853 | 0.2943 | 0.9985
MLE 0.5830 | 0.5851 | 0.6381 | 0.1909 | 0.2807 | 0.9078
SiE)

0.0076 | 0.0050 | 0.0042 | 0.0057 | 0.0188 | 0.5012
1.0458 | 1.0356 | 0.8486 | 1.2920 | 1.0053 | 0.0335
2.1195 | 0.4697 | 0.7496 | 0.3654 | 0.3486 | 0.9982
0.5673 | 0.5559 | 0.6115 | 0.1775 | 0.2475 | 0.9098
0.0115 | 0.0106 | 0.0092 | 0.0083 | 0.0169 | 0.5041
0.7109 | 0.6374 | 0.5297 | 0.8520 | 0.6071 | 0.0326
0.0555 | 0.0899 | 0.1319 | 0.1230 | 0.2381 | 1.0000
0.6556 | 0.6772 | 0.7148 | 0.2855 | 0.3791 | 0.9129
0.0087 | 0.0128 | 0.0174 | 0.0215 | 0.0512 | 0.5084

Bayes SEpp
(50,20)

Bayes SEgp

Bayes LINEX;,

Bayes LINEX;(p

0.8762 | 0.8847 | 0.7101 | 1.1000 | 0.9471 | 0.5882
0.0228 | 0.0264 | 0.0450 | 0.0741 | 0.1895 | 0.2062
(100,40) MLE, 0.5970 | 0.5894 | 0.6352 | 0.1970 | 0.2399 | 0.3311

) 0.0036 | 0.0024 | 0.0033 | 0.0027 | 0.0090 | 0.0173
Bayes SEp(p) 0.9343 | 1.0798 | 0.8539 | 1.2008 | 1.1498 | 0.7007

MLEy
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0.1412 2.8310 | 0.3685 0.1492 | 0.2435 | 0.1383
0.5846 0.5597 | 0.6045 0.1824 | 0.1984 | 0.2969
Bayes SEzp)

’ 0.0058 0.0077 | 0.0077 0.0046 | 0.0089 | 0.0114
0.7666 0.7118 | 0.5850 0.9315 | 0.7670 | 0.5689

Bayes LINEX;
) 0.0308 | 0.0557 | 0.0950 | 0.0580 | 0.1412 | 0.2221
0.6354 | 0.6536 | 0.6912 | 0.2487 | 0.3046 | 0.3588

Bayes LINEX¢ iy
) 0.0050 0.0085 | 0.0118 0.0089 | 0.0221 | 0.0258
MLE. . 0.8671 0.8656 | 0.7359 1.0888 | 1.0482 | 0.5863
Re) 0.0114 0.0132 | 0.0372 0.0358 | 0.1180 | 0.2035
MLE.. 0.5990 | 0.5967 | 0.6355 | 0.1960 | 0.2089 | 0.3315
Se) 0.0020 | 0.0013 | 0.0042 | 0.0014 | 0.0034 | 0.0174
Bayes SEj 0.8911 0.9434 | 0.8292 1.1283 | 1.1658 | 0.6681
’ 4 0.0206 0.0376 | 0.0466 0.0476 | 0.1304 | 0.1475
(200,80) Baves SEor 0.5931 0.5764 | 0.6091 0.1891 | 0.1832 | 0.3044
’ @ 0.0033 | 0.0034 | 0.0050 | 0.0021 | 0.0041 | 0.0120
0.8077 0.7773 | 0.6444 1.0085 | 0.9136 | 0.5800

Bayes LINEX;,
) 0.0130 0.0223 | 0.0704 0.0268 | 0.0817 | 0.2094
0.6202 0.6291 | 0.6739 0.2185 | 0.2508 | 0.3474

Bayes LINEX;(p
) 0.0022 0.0028 | 0.0097 0.0021 | 0.0093 | 0.0220

Note that:

To=son = Q(40%. @ = 1.5,1 = 0.5) = 0.6334 & T,-gp = Q(80%.a = 1.5,1 = 0.5) = 1.7908.

True value of h(t = 0.633¢,& =1.5.4 = 0.5) = 0.8606 & h(t = 1.7908.& = 1.5.1 = 0.5) = 1.0325,
True value of

5(t = 0.6334,& =1.5,4 = 0.3) = 0.6000 & 5(¢t = 1.7908,« = 1.5,4 = 0.3) = 0.2000,

Table (2.a): The AlLs and CPs (%) for the MLE and Bayes estimates
based on Type-Il progressive hybrid censoring schemes at different
time censoring and different values of (n.r) for & = 1.5,4= 0.5,

q, =40% q, =80%
(n,7) Method
| I 1l | I 1l

VLE 9.1712 | 9.2595 | 9.5357 | 8.2979 | 9.9734 | 1.1542

a 94.8 94.8 93.4 94.9 935 98.9
(50,20) VLE 21222 | 3.0856 | 3.6467 | 2.1467 | 2.8715 | 4.0792

A 95.6 94.5 94.2 95.0 94.5 945
Bayes SE,, 3.7734 | 2.9700 | 2.9965 | 3.4764 | 3.1222 | 0.2779
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95.2 95.1 955 95.6 95.3 95.1
1.1789 | 19162 | 2.4626 | 1.1578 | 1.7455 | 3.4487
95.2 95.1 95.1 95.0 95.1 95.1
3.6509 | 3.0679 | 3.1637 | 3.5704 | 3.4174 | 0.2620
95.3 95.3 955 95.1 95.0 95.1
1.0022 | 1.6061 | 2.0336 | 0.9686 | 1.4973 | 3.0657
95.2 95.1 95.1 95.0 95.1 95.3

Bayes 5E;

Bayes LINEX,

Bayes LINEX;

MLE 7.3212 | 9.8467 |10.8802 | 8.1486 | 8.4605 | 4.0190
“ 95.8 94.3 93.4 95.3 95.7 97.9
1.3480 | 1.9165 | 3.3242 | 1.3651 | 2.0824 | 1.9326

MLE;

95.8 95.2 95.1 95.1 953 | 95.8
Do 52 3.6870 | 35416 | 3.7552 | 3.9321 | 3.3773 | 1.9021

(100,40) 95.2 95.2 95.0 95.7 951 | 951
rves <E. 1.0343 | 1.3655 | 2.4571 | 0.9843 | 1.4126 | 1.5944

95.0 95.2 95.3 95.0 95.1 95.6
3.7545 | 3.8874 | 4.1038 | 3.9482 | 3.3376 | 1.7681
95.0 95.1 95.0 95.1 95.3 95.1
0.9022 | 1.2017 | 2.1934 | 0.8690 | 1.2331 | 1.4097
95.1 95.2 95.3 95.1 95.6 95.6

Bayes LINEX,,

Bayes LINEX;

MLE 5.8966 | 8.5846 | 9.7924 | 55099 | 7.5999 | 1.6257
“ 96.7 95.2 93.8 96.1 94.9 96.2
1.1104 | 14118 | 2.1707 | 1.0552 | 1.5373 | 1.3786

MLE;

95.9 953 | 956 9.0 | 957 | 965
Save SE 3.4812 | 39154 | 45478 | 3.4315 | 4.2517 | 1.3138

(200,80) 95.3 958 | 95.4 952 | 955 | 955
oo . | 09352 | 11593 | 19380 | 09192 | 1.1958 | 1.2235

95.2 95.5 95.2 95.3 95.3 96.6
3.4846 | 3.8216 | 5.1189 | 3.5248 | 4.2573 | 1.2102
95.2 95.6 95.1 95.3 95.0 95.2
0.8409 | 1.0486 | 1.7600 | 0.8295 | 1.1154 | 1.1366
95.2 96.2 95.2 955 95.2 96.5

Bayes LINEX,

Bayes LINEX;

Note that: T,_yp = @(40%.a = 1.5.4 = 0.5) = 0.633¢ &
T =505 = Q(80%.a = 1.5,1 = 0.5) = 1.7908.
True value of r(t = 0.6334, & =1.5,1 = 0.3) = 0.8606 & h(t = 1.7908,& = 15,1 = 0.5) = 1.0325,

True value of
50t = 06334, 0 =1.5.1=0.5) = 0.6000 & 5(t = 1.7908. & =1.5.1 = 0.5) = 0.2000,
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Table (2.b): The AlLs and CPs (%) of S(t) and H(t) for the MLE and
Bayes estimates based on hybrid progressive Type-ll censoring
schemes at different time censoring and different values of (n,r) for

a=154=0.5.

q, =40% 0, =80%
() Method
I I i I 1 Il
MLE.. 1.5381 24760 | 4.2954 | 2.8372 | 4.5402 | 0.0330
Rle) 99.9 98.5 98.5 98.8 98.5 95.6
MLE.. 0.5521 0.6646 | 1.3145 | 0.4871 | 1.7674 | 0.0495
ste) 98.5 985 | 985 985 | 985 | 985
1.2356 1.2299 | 1.0353 | 1.7932 | 1.8436 | 0.0393
Bayes 5Epp
(50,20) ) 95.9 96.2 96.1 95.6 95.1 95.7
' Bayes SEq 0.3661 0.3263 | 0.3415 | 0.3175 | 0.4722 | 0.0522
) @ 98.5 98.4 98.2 96.3 95.6 99.0
Bayes LINEX; 0.7253 | 0.8868 | 0.5704 | 1.2873 | 0.9390 | 0.0376
’ 98.3 96.7 994 95.9 96.9 96.2
Bayes LINEX( 0.2971 0.3686 | 0.2401 | 0.4206 | 0.4765 | 0.0487
’ 96.0 96.2 955 95.3 955 98.9
MLE. . 0.8236 1.6193 | 2.7615 | 1.6640 | 4.1534 | 0.6568
R(e) 99.7 98.5 98.5 99.9 98.5 98.5
MLE.. 0.3200 0.4574 | 0.8260 | 0.3286 | 1.2748 | 0.2109
) 98.5 98.5 98.5 98.5 98.5 98.5
0.7638 0.9671 | 0.9340 | 1.1168 | 1.5966 | 0.6488
Bayes SEpp
(100,40) ) 95.8 95.6 97.0 96.0 95.1 96.3
' 0.2680 | 0.2735 | 0.3003 | 0.2481 | 0.3503 | 0.1649
Bayes SEzp)
) 98.2 99.7 98.3 97.6 95.8 994
Bayes LINEX; ) 0.5495 0.8683 | 0.5171 | 0.8330 | 1.0464 | 0.3262
’ 98.3 96.2 99.7 97.2 96.3 98.6
Bayes LINEXs.,) 0.2168 | 0.3505 | 0.2175 | 0.2375 | 0.4193 | 0.0901
: 97.1 96.4 95.6 96.0 95.8 96.8
MLE.. 0.5008 0.7601 | 2.4558 | 0.7671 | 2.6863 | 0.3771
h(e) 99.6 99.8 98.5 97.7 98.5 99.5
MLE.. 0.2034 | 0.2266 | 0.8162 | 0.1601 | 0.5366 | 0.1191
(200,80) o) 99.6 98.5 98.5 99.3 98.5 98.5
0.5360 | 0.6172 | 0.9278 | 0.6959 | 1.2375 | 0.4261
Bayes SEpp)
) 96.5 96.1 96.9 96.4 96.9 95.8
Bayes SEg(y) 0.2050 0.1985 | 0.3136 | 0.1739 | 0.2229 | 0.1146
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98.3 99.8 95.6 98.5 96.8 98.7

Bayes LINEX; 5 0.3889 | 0.4414 | 0.6060 | 0.5826 | 1.0210 | 0.2604
’ 96.8 97.0 99.4 96.9 96.6 96.7

Bayes LINEX, 0.1612 | 0.1466 | 0.2498 | 0.1493 | 0.2329 | 0.0634
) 97.5 96.5 95.8 97.4 955 97.1

Note that:
To=s0s = Q(40%.a = 1.5,1 = 0.5) = 0.6334 & T,-gps = Q(80%. & = 1.5,1 = 0.5) = 1.7908.

True value of
hif=06334,c=151=0.5)=0.2606 & hit = 1.7908,. ¢ = 1.5.14 = 0.5} = 1.0325,

True value of
S(F=106334, 0 =151=0.5) = 0.6000 & 5(t = 1.7908. o =1.5.4 = 0.3) = 0.2000,

3.2 Real Data Set.

A real data set is analyzed for illustrative purpose as well as to assess
the statistical performances of the MLEs and Bayes estimators for the
extended exponential distribution under Type-1l Progressive Hybrid
censoring schemes.

A real-life data set is analyzed to illustrate how the proposed
methodology can be applied in real life phenomenon. We shall use the real-
life data set originally presented by Linhart and Zucchini (1986), which
represents the failure times of the air conditioning system of an air-plane.
The ordered data with n = 30 are as follows: 1, 3, 5, 7, 11, 11, 11, 12, 14,
14, 14, 16, 16, 20, 21, 23, 42, 47, 52, 62, 71,71, 87, 90, 95, 120, 120, 225,
246 and 261. Recently, this real data set was analyzed by Singh et al.
(2015a,b).

We first check whether the extended exponential distribution is
suitable for analyzing this data set or not. The value of Kolmogorov—
Smirnov (K-S) test statistic is calculated to judge the goodness of fit. The
calculated Kolmogorov-Smirnov (K-S) distance between the empirical and
the fitted extended exponential distribution is 0.1992 and its p-value is
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0.1847, which indicate that this distribution can be considered as an
adequate model for the given data set. The MLEs of the parameters are
obtained where &=0.5339and 1 =0.0808.

From the original data, one can generate, three Type-ll progressive
hybrid censoring samples with number of stages r =15 at time censoring

T =50 and removed items R, are assumed to as follows:

Scheme I: R,=n-r and R,,..,R, =0 (15,0,

r

Scheme I1:R,,...R, :O,R(%+1)=n—r and R(%+2),...,Rr _0. (07,15,07).
2

Scheme Ill: R,,..,R,,=0and R, =n-r. (0"*,15).

Table (3.a) and Table (3.b) give the MLEs of the parameters « and
Aand calculated their associated asymptotic confidence interval at proposed

schemes for Type Il progressive hybrid censoring samples in the given real
data set. Also, Bayes estimates under two loss functions; namely: squared
error loss function and LINEX loss function, were computed by utilizing
the MH algorithm under the Non-informative prior, i.e. a=b=c=d =0. It
is indicated that, while generating samples from the posterior distribution
utilizing the MH algorithm, initial values of («, 1) are considered as

(@, 29)=(a,1) where &, 4 are the MLEs of the parameters («, 1)
respectively. Finally, discarded 2000 burn-in samples among the total
10000 samples created from the posterior density, and subsequently
obtained Bayes estimates and HPD interval. Further, the estimates of the of
S(t) and H(t) are obtained in case of MLEs and Bayesian estimates at a
specified time censoring T = 50.
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Table (3.a): ML, Bayesian, and standard errors for real data set based

on Type- Il progressive hybrid censoring under various censoring
schemes
Scheme Parameter MLE SE LINEX
Estimate St.E* Estimate St.E Estimate St.E
@ 0.5549 0.2362 0.4806 0.0131 0.4678 0.0133
A 0.0381 0.0346 0.0539 0.0005 0.0534 0.0004
|
h(t) 0.0005 0.0131 0.0125
s(t) 0.9592 0.4170 0.4324
@ 0.5172 0.2108 1.0179 0.0967 0.9316 0.1041
A 0.0466 0.0362 0.0137  3.64e5 0.0137 3.62 e-5
Il
h(t) 0.0006 0.0141 0.0123
s(t) 0.9439 0.4940 0.5336
@ 2.3726 4.8814 1.8933  0.07445 é'gigi 10é286(_)35
A 0.0092 0.0217 0.0124  1.32e-05 ' '
"
h(t) 5.88e-05 0.0362 8'222? -
s(t) 0.9964 0.2234 '
Scheme Parameter MLE SE LINEX
Estimate St.E* Estimate St.E Estimate St.E
@ 0.5549 0.2362 0.4806 0.0131 0.4678 0.0133
A 0.0381 0.0346 0.0539 0.0005 0.0534 0.0004
|
h(t) 0.0005 0.0131 0.0125
s(t) 0.9592 0.4170 0.4324
@ 0.5172 0.2108 1.0179 0.0967 0.9316 0.1041
A 0.0466 0.0362 0.0137  3.64e5 0.0137 3.62e-5
I
h(t) 0.0006 0.0141 0.0123
s(t) 0.9439 0.4940 0.5336
@ 2.3726 4.8814 1.8933  0.07445 é'gigi 1052?%%5
A 0.0092 0.0217 0.0124  1.32e-05 : '
"
h(t) 5.88e-05 0.0362 8'2223 -
s(t) 0.9964 --- 0.2234 --- '

* St.E — Standard error .
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Table (3.b): Associated interval estimates for ML and Bayesian for real

data set based on Type Il progressive hybrid censoring under various

censoring schemes

Scheme Parameter

Asy-Cl MLE*

HPD Bayes SE

HPD Bayes LINEX

s

A

h(t)
s(t)

(0.2701, 2.3603)
(0.0037, 0.2061)

(0.2732, 0.7144)
(0.0236, 0.0963)

(0.2702, 0.7145)
(0.0233, 0.0971)

(0.0000, 0.0067)
(0.5061, 1.4123)

(0.0014, 0.0248)
(0.2169, 0.6170)

(0.0010, 0.0240)
(0.2274, 0.6375)

h(t)
=(t)

(0.2397, 1.4941)
(0.0076, 0.2138)

(0.4960, 1.6629)
(0.0054, 0.0266)

(0.4958, 1.6631)
(0.0050, 0.0268)

(0.0000, 0.0068)
(0.4920, 1.3958)

(0.0000, 0.0797)
(0.0000, 2.1319)

(0.0000, 0.0670)
(0.0000, 2.0676)

s

A

h(t)
=(t)

(0.0000, 6.5421)
(0.0000, 0.0304)

(1.3995, 2.3769)
(0.0062, 0.0201)

(1.3980, 2.3762)
(0.0064, 0.0203)

(0.0000, 0.0608)
(0.000, 4.6228)

(0.0000, 0.2218)
(0.0000, 1.4292)

(0.0000, 0.2151)
(0.0000, 1.5718)

* Asy CI- Asymptotic confidence interval.

The convergence of MCMC estimation in case of scheme | of Type-

Il progressive hybrid censoring can be showed for « and 4 in Figure (1)
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Figure (1) : Convergence of MCMC estimators for = and 4 using MH
algorithm
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5. Concluding Remarks

In this article, The estimation of the unknown parameters and
reliability and hazard functions of an extended exponential distribution
under Type-Il PHCS is considered. Different estimates for the unknown
parameters using ML and Bayesian approaches are computed. The
asymptotic confidence intervals are also constructed. Bayes estimates of
unknown parameters are developed using MH algorithm with respect to
gamma prior distributions under SE and LINEX loss functions. HPD
intervals based on MH procedure are considered. A real data set and
simulation study was conducted to examine and compare the performance
of the proposed methods for different; sample sizes, censoring times and
censoring schemes.

From the results of simulation study we reported some comments
observed from numerical results.

e When n is increasing: the bias and MSE of the MLE estimate of « is
decreasing at Scheme | but increasing at Scheme Il and Scheme IlI
but the bias of the MLE estimate of 4 is decreasing at all schemes of
removing item. Also, the bias and MSE of the Bayes estimate of «
under the loss functions SE and LINEX is decreasing at all schemes
of removing and the bias and MSE of the Bayes estimate of 1 under
the loss functions SE and LINEX is decreasing at all schemes of
removing item.

e When T is increasing: the bias and MSE of the MLE estimate of «
and A is decreasing at all schemes of removing item. But, the bias
and MSE of the Bayes estimate of « and 4 under the loss functions
SE and LINEX is increasing at all schemes of removing.

e The average interval lengths and associated coverage probabilities of
highest posterior density credible intervals are better than those of
SE loss function and the MLEs.

189



e For the estimates of S (t) and H (t), it is notice that the MLEs is
better than the Bayes estimates under two error loss functions.

e The performance of the estimates in Scheme 11 is better than other
two schemes.

From the results of real data we reported some comments observed from
numerical results.

e The performance of Bayes estimates for the parameters « and A
obtained under squared error loss function is better than the
performance of Bayes estimates obtained under LINEX loss function
and the MLEs.

e For the estimates of S(t) and H(t), it is notice that the MLES is better
than the Bayes estimates under two error loss functions.

e Furthermore, the performance of the estimates in scheme 1 is better
than other two schemes ( 11l and 11 ).
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